In the practice of mining shallow buried ultra-close seams,support failure tends to occur during the process of longwall undermining beneath two layers of room mining goaf(TLRMG).In this paper,the factors causing supp...In the practice of mining shallow buried ultra-close seams,support failure tends to occur during the process of longwall undermining beneath two layers of room mining goaf(TLRMG).In this paper,the factors causing support failure are summarized into geology and mining technology.Combining column lithology and composite beam theory,the key stratum of the rock strata is determined.A finite element numerical simulation is used to analyze the overlying load distribution rule of the main roof for different plane positions of the upper and lower room mining pillars.The tributary area theory(TAT)is adopted to analyze the vertical load distribution of each pillar,and dynamic models of coal pillar instability and main roof fracture are established.Through key block instability analysis,two critical moments are established,of which critical moment A has the greater dynamic load strength.Great economic losses and safety hazards are created by the dynamic load of the fracturing of the main roof.To reduce these negative effects,a method of pulling out supports is developed and two alternative measures for support failure prevention are proposed:reinforcing stope supports in conjunction with reducing mining height,or drilling ground holes to pre-split the main roof.Based on a comprehensive consideration of economic factors and the two categories of support failure causes,the method of reinforcing stope supports while reducing mining height was selected for use on the mining site.展开更多
Based on structural distribution and fault characteristics of the Luzhou block,southern Sichuan Basin,as well as microseismic,well logging and in-situ stress data,the casing deformation behaviors of deep shale gas wel...Based on structural distribution and fault characteristics of the Luzhou block,southern Sichuan Basin,as well as microseismic,well logging and in-situ stress data,the casing deformation behaviors of deep shale gas wells are summarized,and the casing deformation mechanism and influencing factors are identified.Then,the risk assessment chart of casing deformation is plotted,and the measures for preventing and controlling casing deformation are proposed.Fracturing-activated fault slip is a main factor causing the casing deformation in deep shale gas wells in the Luzhou block.In the working area,the approximate fracture angle is primarily 10°-50°,accounting for 65.34%,and the critical pore pressure increment for fault-activation is 6.05-9.71 MPa.The casing deformation caused by geological factors can be prevented/controlled by avoiding the faults at risk and deploying wells in areas with low value of stress factor.The casing deformation caused by engineering factors can be prevented/controlled by:(1)keeping wells avoid faults with risks of activation and slippage,or deploying wells in areas far from the faulting center if such avoidance is impossible;(2)optimizing the wellbore parameters,for example,adjusting the wellbore orientation to reduce the shear force on casing to a certain extent and thus mitigate the casing deformation;(3)optimizing the casing program to ensure that the curvature radius of the curved section of horizontal well is greater than 200 m while the drilling rate of high-quality reservoirs is not impaired;(4)optimizing the fracturing parameters,for example,increasing the evasive distance,lowering the single-operation pressure,and increasing the stage length,which can help effectively reduce the risk of casing deformation.展开更多
Firedamp and coal dust explosion constitute a lion’s share in mine accidents in a global mining scenario.This paper reports a list of mine explosion disasters since last two decades,a critical review of the different...Firedamp and coal dust explosion constitute a lion’s share in mine accidents in a global mining scenario.This paper reports a list of mine explosion disasters since last two decades,a critical review of the different prevention and constructive measures,and its recent development to avoid firedamp and coal dust explosion.Preventive legislation in core coal-producing countries,viz.China,USA,Australia,South Africa,and India related to firedamp and coal dust explosion are critically analysed.Accidents occurred due to explosion after Nationalisation of Coal Mines(1973)in India are listed.Prevention and constructive measures adopted in India are critically analysed with respect to the global mining scenario.Measures like methane credit concept,classification of mines/seams with respect to explosion risk zone,deflagration index;installation of automatic fire warning devices,canopy air curtain technology,explosion-prevention measures,such as fire-retardant materials,inhibitors,extinguishing agent,dust suppressor,and active explosion barrier are discussed in detail to avoid explosion and thereby adhering to zero accident policy due to coal mine explosion.展开更多
Individuals’ preventive measures,as an effective way to suppress epidemic transmission and to protect themselves from infection,have attracted much academic concern,especially during the COVID-19 pandemic.In this pap...Individuals’ preventive measures,as an effective way to suppress epidemic transmission and to protect themselves from infection,have attracted much academic concern,especially during the COVID-19 pandemic.In this paper,a reinforcement learning-based model is proposed to explore individuals’ effective preventive measures against epidemics.Through extensive simulations,we find that the cost of preventive measures influences the epidemic transmission process significantly.The infection scale increases as the cost of preventive measures grows,which means that the government needs to provide preventive measures with low cost to suppress the epidemic transmission.In addition,the effective preventive measures vary from individual to individual according to the social contacts.Individuals who contact with others frequently in daily life are highly recommended to take strict preventive measures to protect themselves from infection,while those who have little social contacts do not need to take any measures considering the inevitable cost.Our research contributes to exploring the effective measures for individuals,which can provide the government and individuals useful suggestions in response to epidemics.展开更多
基金supported by the National Natural Science Foundation of China (No. 51374200)
文摘In the practice of mining shallow buried ultra-close seams,support failure tends to occur during the process of longwall undermining beneath two layers of room mining goaf(TLRMG).In this paper,the factors causing support failure are summarized into geology and mining technology.Combining column lithology and composite beam theory,the key stratum of the rock strata is determined.A finite element numerical simulation is used to analyze the overlying load distribution rule of the main roof for different plane positions of the upper and lower room mining pillars.The tributary area theory(TAT)is adopted to analyze the vertical load distribution of each pillar,and dynamic models of coal pillar instability and main roof fracture are established.Through key block instability analysis,two critical moments are established,of which critical moment A has the greater dynamic load strength.Great economic losses and safety hazards are created by the dynamic load of the fracturing of the main roof.To reduce these negative effects,a method of pulling out supports is developed and two alternative measures for support failure prevention are proposed:reinforcing stope supports in conjunction with reducing mining height,or drilling ground holes to pre-split the main roof.Based on a comprehensive consideration of economic factors and the two categories of support failure causes,the method of reinforcing stope supports while reducing mining height was selected for use on the mining site.
基金Supported by the PetroChina Scientific Research and Technology Development Project (2022KT1205)。
文摘Based on structural distribution and fault characteristics of the Luzhou block,southern Sichuan Basin,as well as microseismic,well logging and in-situ stress data,the casing deformation behaviors of deep shale gas wells are summarized,and the casing deformation mechanism and influencing factors are identified.Then,the risk assessment chart of casing deformation is plotted,and the measures for preventing and controlling casing deformation are proposed.Fracturing-activated fault slip is a main factor causing the casing deformation in deep shale gas wells in the Luzhou block.In the working area,the approximate fracture angle is primarily 10°-50°,accounting for 65.34%,and the critical pore pressure increment for fault-activation is 6.05-9.71 MPa.The casing deformation caused by geological factors can be prevented/controlled by avoiding the faults at risk and deploying wells in areas with low value of stress factor.The casing deformation caused by engineering factors can be prevented/controlled by:(1)keeping wells avoid faults with risks of activation and slippage,or deploying wells in areas far from the faulting center if such avoidance is impossible;(2)optimizing the wellbore parameters,for example,adjusting the wellbore orientation to reduce the shear force on casing to a certain extent and thus mitigate the casing deformation;(3)optimizing the casing program to ensure that the curvature radius of the curved section of horizontal well is greater than 200 m while the drilling rate of high-quality reservoirs is not impaired;(4)optimizing the fracturing parameters,for example,increasing the evasive distance,lowering the single-operation pressure,and increasing the stage length,which can help effectively reduce the risk of casing deformation.
基金The authors are grateful to the Ministry of Coal,Government of India(No.CIL/R&D/01/60/2016)for financial support。
文摘Firedamp and coal dust explosion constitute a lion’s share in mine accidents in a global mining scenario.This paper reports a list of mine explosion disasters since last two decades,a critical review of the different prevention and constructive measures,and its recent development to avoid firedamp and coal dust explosion.Preventive legislation in core coal-producing countries,viz.China,USA,Australia,South Africa,and India related to firedamp and coal dust explosion are critically analysed.Accidents occurred due to explosion after Nationalisation of Coal Mines(1973)in India are listed.Prevention and constructive measures adopted in India are critically analysed with respect to the global mining scenario.Measures like methane credit concept,classification of mines/seams with respect to explosion risk zone,deflagration index;installation of automatic fire warning devices,canopy air curtain technology,explosion-prevention measures,such as fire-retardant materials,inhibitors,extinguishing agent,dust suppressor,and active explosion barrier are discussed in detail to avoid explosion and thereby adhering to zero accident policy due to coal mine explosion.
基金Project supported by the National Key Technology Research and Development Program of China(Grant No.2018YFF0301000)the National Natural Science Foundation of China(Grant Nos.71673161 and 71790613)。
文摘Individuals’ preventive measures,as an effective way to suppress epidemic transmission and to protect themselves from infection,have attracted much academic concern,especially during the COVID-19 pandemic.In this paper,a reinforcement learning-based model is proposed to explore individuals’ effective preventive measures against epidemics.Through extensive simulations,we find that the cost of preventive measures influences the epidemic transmission process significantly.The infection scale increases as the cost of preventive measures grows,which means that the government needs to provide preventive measures with low cost to suppress the epidemic transmission.In addition,the effective preventive measures vary from individual to individual according to the social contacts.Individuals who contact with others frequently in daily life are highly recommended to take strict preventive measures to protect themselves from infection,while those who have little social contacts do not need to take any measures considering the inevitable cost.Our research contributes to exploring the effective measures for individuals,which can provide the government and individuals useful suggestions in response to epidemics.