热误差是影响高精密数控机床加工精度的重要因素。为了提高机床加工精度和性能,减少机床运行中产生的热误差,文章提出一种基于热图像的灰狼优化算法(grey wolf optimization algorithm,GWOA)和双向长短期记忆神经网络(bidirectional lon...热误差是影响高精密数控机床加工精度的重要因素。为了提高机床加工精度和性能,减少机床运行中产生的热误差,文章提出一种基于热图像的灰狼优化算法(grey wolf optimization algorithm,GWOA)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)混合的热误差预测模型。首先,采用热成像仪获取机床主轴区域的温度场信息;其次,利用DBSCAN聚类(density-based spatial clustering of applications with noise)算法和相关系数法筛选出温度敏感点;然后,通过模拟灰狼群体捕食行为,在参数空间中进行搜索以找到BiLSTM所需的最优参数;最后,使用获得的机床温度敏感点和热位移数据进行热误差预测,并在试验机床上进行验证。实验结果表明,使用GWOA优化BiLSTM神经网络的预测模型相比BiLSTM神经网络预测模型的均方根误差(root mean square error,RMSE)和平均绝对误差(mean absolute error,MAE)分别减小了约0.5180、0.3823μm,决定系数R^(2)提升了0.0578。与BiLSTM神经网络模型相比,利用GWOA优化后的模型具有更加优良的预测性能。展开更多
【目的】巷道点云数据的噪声去除与三维重建是实现巷道数字化建模与分析的关键环节,但目前传统单一滤波算法难以有效去除巷道点云不同尺度噪声,现有三维重建算法存在建模精度低、易失真等问题,因此需要研究获取高质量的巷道点云数据方...【目的】巷道点云数据的噪声去除与三维重建是实现巷道数字化建模与分析的关键环节,但目前传统单一滤波算法难以有效去除巷道点云不同尺度噪声,现有三维重建算法存在建模精度低、易失真等问题,因此需要研究获取高质量的巷道点云数据方法和构建高精确巷道三维模型技术。【方法】通过基于邻域半径R、最小邻域点数Imin、空间阈值σc、特征保持因子σs等参数自适应的分类巷道点云去噪算法,设计基于符号距离函数(signed distance functions,SDF)的深度学习隐式曲面重建方法。集成均值法、改进的基于密度的聚类(density-based spatial clustering of applications with noise,DBSCAN)算法和改进的双边滤波算法,构建分类处理技术框架,集成算法自动分析巷道点云数据中的噪声类型,并通过自适应机制高效去除不同尺度噪声,实现主体点云数据的深度净化。采用PointNet++提取巷道点云局部区域特征,导入神经隐式网络学习局部上下文信息,生成全局模型SDF,并结合移动立方体算法构建精细化的巷道三维模型。【结果和结论】以安徽省张集煤矿1∶1模拟巷道为实验场景,开展多维空间的巷道点云去噪与三维重建研究。研究结果表明:(1)集成算法可根据巷道场景与噪声类别动态调整去噪策略,具备自适应优化性能,产生的Ⅰ类和Ⅱ类误差分别为1.54%和5.37%,可在保留主体点云特征的同时有效去除大、小尺度及重复点三类噪声。(2)重建算法能在保持巷道模型精度与光滑度的同时有效减少孔洞,且精准刻画复杂位置的结构细节,重建巷道的平均偏差、标准偏差、均方根误差分别为0.037、0.040、0.041 m,满足智能化矿山建设高精度要求,为矿山数字化转型升级与智能精准开采提供高质量的三维数据支撑。展开更多
文摘热误差是影响高精密数控机床加工精度的重要因素。为了提高机床加工精度和性能,减少机床运行中产生的热误差,文章提出一种基于热图像的灰狼优化算法(grey wolf optimization algorithm,GWOA)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)混合的热误差预测模型。首先,采用热成像仪获取机床主轴区域的温度场信息;其次,利用DBSCAN聚类(density-based spatial clustering of applications with noise)算法和相关系数法筛选出温度敏感点;然后,通过模拟灰狼群体捕食行为,在参数空间中进行搜索以找到BiLSTM所需的最优参数;最后,使用获得的机床温度敏感点和热位移数据进行热误差预测,并在试验机床上进行验证。实验结果表明,使用GWOA优化BiLSTM神经网络的预测模型相比BiLSTM神经网络预测模型的均方根误差(root mean square error,RMSE)和平均绝对误差(mean absolute error,MAE)分别减小了约0.5180、0.3823μm,决定系数R^(2)提升了0.0578。与BiLSTM神经网络模型相比,利用GWOA优化后的模型具有更加优良的预测性能。
文摘【目的】巷道点云数据的噪声去除与三维重建是实现巷道数字化建模与分析的关键环节,但目前传统单一滤波算法难以有效去除巷道点云不同尺度噪声,现有三维重建算法存在建模精度低、易失真等问题,因此需要研究获取高质量的巷道点云数据方法和构建高精确巷道三维模型技术。【方法】通过基于邻域半径R、最小邻域点数Imin、空间阈值σc、特征保持因子σs等参数自适应的分类巷道点云去噪算法,设计基于符号距离函数(signed distance functions,SDF)的深度学习隐式曲面重建方法。集成均值法、改进的基于密度的聚类(density-based spatial clustering of applications with noise,DBSCAN)算法和改进的双边滤波算法,构建分类处理技术框架,集成算法自动分析巷道点云数据中的噪声类型,并通过自适应机制高效去除不同尺度噪声,实现主体点云数据的深度净化。采用PointNet++提取巷道点云局部区域特征,导入神经隐式网络学习局部上下文信息,生成全局模型SDF,并结合移动立方体算法构建精细化的巷道三维模型。【结果和结论】以安徽省张集煤矿1∶1模拟巷道为实验场景,开展多维空间的巷道点云去噪与三维重建研究。研究结果表明:(1)集成算法可根据巷道场景与噪声类别动态调整去噪策略,具备自适应优化性能,产生的Ⅰ类和Ⅱ类误差分别为1.54%和5.37%,可在保留主体点云特征的同时有效去除大、小尺度及重复点三类噪声。(2)重建算法能在保持巷道模型精度与光滑度的同时有效减少孔洞,且精准刻画复杂位置的结构细节,重建巷道的平均偏差、标准偏差、均方根误差分别为0.037、0.040、0.041 m,满足智能化矿山建设高精度要求,为矿山数字化转型升级与智能精准开采提供高质量的三维数据支撑。