The uncertainty of observers' positions can lead to significantly degrading in source localization accuracy. This pa-per proposes a method of using self-location for calibrating the positions of observer stations in ...The uncertainty of observers' positions can lead to significantly degrading in source localization accuracy. This pa-per proposes a method of using self-location for calibrating the positions of observer stations in source localization to reduce the errors of the observer positions and improve the accuracy of the source localization. The relative distance measurements of the two coordinative observers are used for the linear minimum mean square error (LMMSE) estimator. The results of computer si-mulations prove the feasibility and effectiveness of the proposed method. With the general estimation errors of observers' positions, the MSE of the source localization with self-location calibration, which is significantly lower than that without self-location calibra-tion, is approximating to the Cramer-Rao lower bound (CRLB).展开更多
Compared with the rank reduction estimator(RARE) based on second-order statistics(called SOS-RARE), the RARE based on fourth-order cumulants(referred to as FOC-RARE) can handle more sources and restrain the negative i...Compared with the rank reduction estimator(RARE) based on second-order statistics(called SOS-RARE), the RARE based on fourth-order cumulants(referred to as FOC-RARE) can handle more sources and restrain the negative impacts of the Gaussian colored noise. However, the unexpected modeling errors appearing in practice are known to significantly degrade the performance of the RARE. Therefore, the direction-of-arrival(DOA) estimation performance of the FOC-RARE is quantitatively derived. The explicit expression for direction-finding(DF) error is derived via the first-order perturbation analysis, and then the theoretical formula for the mean square error(MSE) is given. Simulation results demonstrate the validation of the theoretical analysis and reveal that the FOC-RARE is more robust to the unexpected modeling errors than the SOS-RARE.展开更多
工业数据由于技术故障和人为因素通常导致数据异常,现有基于约束的方法因约束阈值设置的过于宽松或严格会导致修复错误,基于统计的方法因平滑修复机制导致对时间步长较远的异常值修复准确度较低.针对上述问题,提出了基于奖励机制的最小...工业数据由于技术故障和人为因素通常导致数据异常,现有基于约束的方法因约束阈值设置的过于宽松或严格会导致修复错误,基于统计的方法因平滑修复机制导致对时间步长较远的异常值修复准确度较低.针对上述问题,提出了基于奖励机制的最小迭代修复和改进WGAN混合模型的时序数据修复方法.首先,在预处理阶段,保留异常数据,进行信息标注等处理,从而充分挖掘异常值与真实值之间的特征约束.其次,在噪声模块提出了近邻参数裁剪规则,用于修正最小迭代修复公式生成的噪声向量.将其传递至模拟分布模块的生成器中,同时设计了一个动态时间注意力网络层,用于提取时序特征权重并与门控循环单元串联组合捕捉不同步长的特征依赖,并引入递归多步预测原理共同提升模型的表达能力;在判别器中设计了Abnormal and Truth奖励机制和Weighted Mean Square Error损失函数共同反向优化生成器修复数据的细节和质量.最后,在公开数据集和真实数据集上的实验结果表明,该方法的修复准确度与模型稳定性显著优于现有方法.展开更多
Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent...Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.展开更多
Since the satellite communication goes in the trend of high-frequency and fast speed, the coefficients updating and the precision of the traditional pre-distortion feedback methods need to be further improved. On this...Since the satellite communication goes in the trend of high-frequency and fast speed, the coefficients updating and the precision of the traditional pre-distortion feedback methods need to be further improved. On this basis, this paper proposes dual loop feedback pre-distortion, which uses two first-order Volterra filter models to reduce the computing complexity and a dynamic error adjustment model to construct a revised feedback to ensure a better pre-distortion performance. The computation complexity, iterative convergence speed and precision of the proposed method are theoretically analyzed. Simulation results show that this dual loop feedback pre-distortion can speed the updating of coefficients and ensure the linearity of the amplifier output.展开更多
A low complexity Per-Antenna Power Control (PAPC) approach based on Minimum Mean Squared Error (MMSE) detection for V-BLAST is proposed in this paper. The PAPC approach is developed for minimizing the Bit Error Ra...A low complexity Per-Antenna Power Control (PAPC) approach based on Minimum Mean Squared Error (MMSE) detection for V-BLAST is proposed in this paper. The PAPC approach is developed for minimizing the Bit Error Rate (BER) averaged over all substreams when the data throughput and the total transmit power keep constant over time. Simulation results show that the Power-controlled V-BLAST (P-BLAST) outperforms the conventional V-BLAST in terms of BER performance with MMSE detector, especially in presence of high spatial correlation between antennas. However, the additional complexity for P-BLAST is not high. When MMSE detector is adopted, the P-BLAST can achieve a comparable BER performance to that of conventional V-BLAST with Maximum Likelihood (ML) detector but with low complexity.展开更多
For reducing the inter-user interference in multi-user multiple-input multiple-output(MU-MIMO) wireless communication systems,e.g.,MIMO-orthogonal frequency division multiplexing(MIMO-OFDM) systems,it is often des...For reducing the inter-user interference in multi-user multiple-input multiple-output(MU-MIMO) wireless communication systems,e.g.,MIMO-orthogonal frequency division multiplexing(MIMO-OFDM) systems,it is often desirable to the complex preprocessing at the transmitter.This paper proposes a multi-user beamforming algorithm with sub-codebook selection.Based on the minimal leakage criterion,the codebook selection,limited feed-forward and minimum mean square error(MMSE) detection are combined in the proposed algorithm.This avoids the complex channel matrix decomposition and inversion.Consequently,the computational complexity at the transmitter is significantly reduced.Simulation results show that the proposed algorithm performs better than existing beamforming algorithms.展开更多
In multi-user multiple input multiple output (MU-MIMO) systems, the outdated channel state information at the transmit- ter caused by channel time variation has been shown to greatly reduce the achievable ergodic su...In multi-user multiple input multiple output (MU-MIMO) systems, the outdated channel state information at the transmit- ter caused by channel time variation has been shown to greatly reduce the achievable ergodic sum capacity. A simple yet effec- tive solution to this problem is presented by designing a channel extrapolator relying on Karhunen-Loeve (KL) expansion of time- varying channels. In this scheme, channel estimation is done at the base station (BS) rather than at the user terminal (UT), which thereby dispenses the channel parameters feedback from the UT to the BS. Moreover, the inherent channel correlation and the parsimonious parameterization properties of the KL expan- sion are respectively exploited to reduce the channel mismatch error and the computational complexity. Simulations show that the presented scheme outperforms conventional schemes in terms of both channel estimation mean square error (MSE) and ergodic capacity.展开更多
A novel practical codebook-precoding multiple-input multiple-output(MIMO) system based on signal space diversity(SSD) with the minimum mean squared error(MMSE)receiver is proposed.This scheme utilizes rotation m...A novel practical codebook-precoding multiple-input multiple-output(MIMO) system based on signal space diversity(SSD) with the minimum mean squared error(MMSE)receiver is proposed.This scheme utilizes rotation modulation and space-time-frequency component interleaving.A novel precoding matrix selection criterion to maximize the average signal to interference plus noise ratio(SINR) is also put forward for the proposed scheme,which has a larger average mutual information(AMI).Based on the AMI- maximization criterion,the optimal rotation angles for the proposed system are also investigated.The new scheme can make full use of space-time-frequency diversity and signal space diversity,and exhibit high spectral efficiency and high reliability in fading channels.Simulation results show that the proposed scheme greatly outperforms the conventional bit- interleaved coded modulation(BICM) MIMO-orthogonal frequency division multiplexing(OFDM) scheme without SSD,which is up to4.5 dB signal-to-noise ratio(SNR) gain.展开更多
The optimal design of training sequences for channel estimation in multiple-input multiple-output (MIMO) systems under spatially correlated fading is considered. The channel is assumed to be a block-fading model wit...The optimal design of training sequences for channel estimation in multiple-input multiple-output (MIMO) systems under spatially correlated fading is considered. The channel is assumed to be a block-fading model with spatial correlation known at both the transmitter and the receiver. To minimize the channel estimation error, optimal training sequences are designed to exploit full information of the spatial correlation under the criterion of minimum mean square error (MMSE). It is investigated that the spatial correlation is helpful to decrease the estimation error and the proposed training sequences have good performance via simulations.展开更多
An optimal minimum mean square error successive interference cancellation (OMMSE SIC) scheme for Groupwise space-time block coding (G-STBC) multiple-input multiple-output (MIMO) systems is presented. In such a s...An optimal minimum mean square error successive interference cancellation (OMMSE SIC) scheme for Groupwise space-time block coding (G-STBC) multiple-input multiple-output (MIMO) systems is presented. In such a system, transmit antennas are partitioned into several STBC encoding groups and each group transmits independent data stream which is individually STBC encoded. On the receiver side, by exploring the temporal constraint provided by STBC, an equivalent channel model similar to the one in standard vertical Bell laboratories layered space-time (V-BLAST) systems is generated. Then OMMSE SIC algorithm is performed to detect all the transmitted information. Simulation compares the proposed scheme with non-ordering MMSE SIC scheme and the corresponding equal data rate scheme in V-BLAST systems with the same receive antennas' number. Result shows that the proposed scheme has better performance than non-ordering MMSE SIC scheme and by introducing more transmit antennas and adopting the OMMSE SIC scheme, better performance also can be achieved than corresponding V-BLAST systems.展开更多
Sequential measurement processing is of benefit to both estimation accuracy and computational efficiency. When the noises are correlated across the measurement components, decorrelation based on covariance matrix fact...Sequential measurement processing is of benefit to both estimation accuracy and computational efficiency. When the noises are correlated across the measurement components, decorrelation based on covariance matrix factorization is required in the previous methods in order to perform sequential updates properly. A new sequential processing method, which carries out the sequential updates directly using the correlated measurement components, is proposed. And a typical sequential processing example is investigated, where the converted position measure- ments are used to estimate target states by standard Kalman filtering equations and the converted Doppler measurements are then incorporated into a minimum mean squared error (MMSE) estimator with the updated cross-covariance involved to account for the correlated errors. Numerical simulations demonstrate the superiority of the proposed new sequential processing in terms of better accuracy and consistency than the conventional sequential filter based on measurement decorrelation.展开更多
This paper presents a novel robust S transform algorithm based on the clipping method to process signals corrupted by impulsive noise.The proposed algorithm is introduced to determine the clipping threshold value acco...This paper presents a novel robust S transform algorithm based on the clipping method to process signals corrupted by impulsive noise.The proposed algorithm is introduced to determine the clipping threshold value according to the characteristics of the signal samples.Signals in various impulsive noise models are considered to illustrate that the robust S transform can achieve better performance than the standard S transform.Moreover,mean square errors for instantaneous frequency estimation of the robust S transform are compared with that of the standard S transform,showing that the robust S transform can achieve significantly improved instantaneous frequency estimation for the signals in impulsive noise.展开更多
A methodology, termed estimation error minimization(EEM) method, was proposed to determine the optimal number and locations of sensors so as to better estimate the vibration response of the entire structure. Utilizing...A methodology, termed estimation error minimization(EEM) method, was proposed to determine the optimal number and locations of sensors so as to better estimate the vibration response of the entire structure. Utilizing the limited sensor measurements, the entire structure response can be estimated based on the system equivalent reduction-expansion process(SEREP) method. In order to compare the capability of capturing the structural vibration response with other optimal sensor placement(OSP) methods, the effective independence(EI) method, modal kinetic energy(MKE) method and modal assurance criterion(MAC) method, were also investigated. A statistical criterion, root mean square error(RMSE), was employed to assess the magnitude of the estimation error between the real response and the estimated response. For investigating the effectiveness and accuracy of the above OSP methods, a 31-bar truss structure is introduced as a simulation example. The analysis results show that both the maximum and mean of the RMSE value obtained from the EEM method are smaller than those from other OSP methods, which indicates that the optimal sensor configuration obtained from the EEM method can provide a more accurate estimation of the entire structure response compared with the EI, MKE and MAC methods.展开更多
High-speed magnitude approximation algorithms for complex vectors are discussed intensively. The performance and the convergence speed of these approximation algorithms are analyzed. For the polygon fitting algorithms...High-speed magnitude approximation algorithms for complex vectors are discussed intensively. The performance and the convergence speed of these approximation algorithms are analyzed. For the polygon fitting algorithms, the approximation formula under the least mean square error criterion is derived. For the iterative algorithms, a modified CORDIC (coordinate rotation digital computer) algorithm is developed. This modified CORDIC algorithm is proved to be with a maximum relative error about one half that of the original CORDIC algorithm. Finally, the effects of the finite register length on these algorithms are also concerned, which shows that 9 to 12-bit coefficients are sufficient for practical applications.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(ZYGX2009J016)
文摘The uncertainty of observers' positions can lead to significantly degrading in source localization accuracy. This pa-per proposes a method of using self-location for calibrating the positions of observer stations in source localization to reduce the errors of the observer positions and improve the accuracy of the source localization. The relative distance measurements of the two coordinative observers are used for the linear minimum mean square error (LMMSE) estimator. The results of computer si-mulations prove the feasibility and effectiveness of the proposed method. With the general estimation errors of observers' positions, the MSE of the source localization with self-location calibration, which is significantly lower than that without self-location calibra-tion, is approximating to the Cramer-Rao lower bound (CRLB).
基金Project(61201381) supported by the National Natural Science Foundation of ChinaProject(YP12JJ202057) supported by the Future Development Foundation of Zhengzhou Information Science and Technology College,China
文摘Compared with the rank reduction estimator(RARE) based on second-order statistics(called SOS-RARE), the RARE based on fourth-order cumulants(referred to as FOC-RARE) can handle more sources and restrain the negative impacts of the Gaussian colored noise. However, the unexpected modeling errors appearing in practice are known to significantly degrade the performance of the RARE. Therefore, the direction-of-arrival(DOA) estimation performance of the FOC-RARE is quantitatively derived. The explicit expression for direction-finding(DF) error is derived via the first-order perturbation analysis, and then the theoretical formula for the mean square error(MSE) is given. Simulation results demonstrate the validation of the theoretical analysis and reveal that the FOC-RARE is more robust to the unexpected modeling errors than the SOS-RARE.
文摘工业数据由于技术故障和人为因素通常导致数据异常,现有基于约束的方法因约束阈值设置的过于宽松或严格会导致修复错误,基于统计的方法因平滑修复机制导致对时间步长较远的异常值修复准确度较低.针对上述问题,提出了基于奖励机制的最小迭代修复和改进WGAN混合模型的时序数据修复方法.首先,在预处理阶段,保留异常数据,进行信息标注等处理,从而充分挖掘异常值与真实值之间的特征约束.其次,在噪声模块提出了近邻参数裁剪规则,用于修正最小迭代修复公式生成的噪声向量.将其传递至模拟分布模块的生成器中,同时设计了一个动态时间注意力网络层,用于提取时序特征权重并与门控循环单元串联组合捕捉不同步长的特征依赖,并引入递归多步预测原理共同提升模型的表达能力;在判别器中设计了Abnormal and Truth奖励机制和Weighted Mean Square Error损失函数共同反向优化生成器修复数据的细节和质量.最后,在公开数据集和真实数据集上的实验结果表明,该方法的修复准确度与模型稳定性显著优于现有方法.
基金supported by National Natural Science Foundation of China(62371225,62371227)。
文摘Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.
文摘Since the satellite communication goes in the trend of high-frequency and fast speed, the coefficients updating and the precision of the traditional pre-distortion feedback methods need to be further improved. On this basis, this paper proposes dual loop feedback pre-distortion, which uses two first-order Volterra filter models to reduce the computing complexity and a dynamic error adjustment model to construct a revised feedback to ensure a better pre-distortion performance. The computation complexity, iterative convergence speed and precision of the proposed method are theoretically analyzed. Simulation results show that this dual loop feedback pre-distortion can speed the updating of coefficients and ensure the linearity of the amplifier output.
基金This project was supported by the National Natural Science Foundation of China ( 60496314).
文摘A low complexity Per-Antenna Power Control (PAPC) approach based on Minimum Mean Squared Error (MMSE) detection for V-BLAST is proposed in this paper. The PAPC approach is developed for minimizing the Bit Error Rate (BER) averaged over all substreams when the data throughput and the total transmit power keep constant over time. Simulation results show that the Power-controlled V-BLAST (P-BLAST) outperforms the conventional V-BLAST in terms of BER performance with MMSE detector, especially in presence of high spatial correlation between antennas. However, the additional complexity for P-BLAST is not high. When MMSE detector is adopted, the P-BLAST can achieve a comparable BER performance to that of conventional V-BLAST with Maximum Likelihood (ML) detector but with low complexity.
基金support by the National Natural Science Foundation of China (60702060)the 111 Project
文摘For reducing the inter-user interference in multi-user multiple-input multiple-output(MU-MIMO) wireless communication systems,e.g.,MIMO-orthogonal frequency division multiplexing(MIMO-OFDM) systems,it is often desirable to the complex preprocessing at the transmitter.This paper proposes a multi-user beamforming algorithm with sub-codebook selection.Based on the minimal leakage criterion,the codebook selection,limited feed-forward and minimum mean square error(MMSE) detection are combined in the proposed algorithm.This avoids the complex channel matrix decomposition and inversion.Consequently,the computational complexity at the transmitter is significantly reduced.Simulation results show that the proposed algorithm performs better than existing beamforming algorithms.
基金supported by the National Natural Science Foundation of China (6096200161071088)+2 种基金the Natural Science Foundation of Fujian Province of China (2012J05119)the Fundamental Research Funds for the Central Universities (11QZR02)the Research Fund of Guangxi Key Lab of Wireless Wideband Communication & Signal Processing (21104)
文摘In multi-user multiple input multiple output (MU-MIMO) systems, the outdated channel state information at the transmit- ter caused by channel time variation has been shown to greatly reduce the achievable ergodic sum capacity. A simple yet effec- tive solution to this problem is presented by designing a channel extrapolator relying on Karhunen-Loeve (KL) expansion of time- varying channels. In this scheme, channel estimation is done at the base station (BS) rather than at the user terminal (UT), which thereby dispenses the channel parameters feedback from the UT to the BS. Moreover, the inherent channel correlation and the parsimonious parameterization properties of the KL expan- sion are respectively exploited to reduce the channel mismatch error and the computational complexity. Simulations show that the presented scheme outperforms conventional schemes in terms of both channel estimation mean square error (MSE) and ergodic capacity.
基金supported by the National Natural Science Foundation of China(61171101)the Fundamental Research Funds for the Central Universitiesthe 2014 Doctorial Innovation Fund of Beijing University of Posts and Telecommunications(CX201426)
文摘A novel practical codebook-precoding multiple-input multiple-output(MIMO) system based on signal space diversity(SSD) with the minimum mean squared error(MMSE)receiver is proposed.This scheme utilizes rotation modulation and space-time-frequency component interleaving.A novel precoding matrix selection criterion to maximize the average signal to interference plus noise ratio(SINR) is also put forward for the proposed scheme,which has a larger average mutual information(AMI).Based on the AMI- maximization criterion,the optimal rotation angles for the proposed system are also investigated.The new scheme can make full use of space-time-frequency diversity and signal space diversity,and exhibit high spectral efficiency and high reliability in fading channels.Simulation results show that the proposed scheme greatly outperforms the conventional bit- interleaved coded modulation(BICM) MIMO-orthogonal frequency division multiplexing(OFDM) scheme without SSD,which is up to4.5 dB signal-to-noise ratio(SNR) gain.
基金the National Science Foundation for Distinguished Young Scholars (60725105)the SixthProject of the Key Project of National Nature Science Foundation of China (60496316)+2 种基金the National "863" Project (2007AA012288)the National Nature Science Foundation of China (60572146)the "111" Project (B08038).
文摘The optimal design of training sequences for channel estimation in multiple-input multiple-output (MIMO) systems under spatially correlated fading is considered. The channel is assumed to be a block-fading model with spatial correlation known at both the transmitter and the receiver. To minimize the channel estimation error, optimal training sequences are designed to exploit full information of the spatial correlation under the criterion of minimum mean square error (MMSE). It is investigated that the spatial correlation is helpful to decrease the estimation error and the proposed training sequences have good performance via simulations.
文摘An optimal minimum mean square error successive interference cancellation (OMMSE SIC) scheme for Groupwise space-time block coding (G-STBC) multiple-input multiple-output (MIMO) systems is presented. In such a system, transmit antennas are partitioned into several STBC encoding groups and each group transmits independent data stream which is individually STBC encoded. On the receiver side, by exploring the temporal constraint provided by STBC, an equivalent channel model similar to the one in standard vertical Bell laboratories layered space-time (V-BLAST) systems is generated. Then OMMSE SIC algorithm is performed to detect all the transmitted information. Simulation compares the proposed scheme with non-ordering MMSE SIC scheme and the corresponding equal data rate scheme in V-BLAST systems with the same receive antennas' number. Result shows that the proposed scheme has better performance than non-ordering MMSE SIC scheme and by introducing more transmit antennas and adopting the OMMSE SIC scheme, better performance also can be achieved than corresponding V-BLAST systems.
基金supported by the National Natural Science Foundation of China(6120131161132005)the Aerospace Science Foundation of China(20142077010)
文摘Sequential measurement processing is of benefit to both estimation accuracy and computational efficiency. When the noises are correlated across the measurement components, decorrelation based on covariance matrix factorization is required in the previous methods in order to perform sequential updates properly. A new sequential processing method, which carries out the sequential updates directly using the correlated measurement components, is proposed. And a typical sequential processing example is investigated, where the converted position measure- ments are used to estimate target states by standard Kalman filtering equations and the converted Doppler measurements are then incorporated into a minimum mean squared error (MMSE) estimator with the updated cross-covariance involved to account for the correlated errors. Numerical simulations demonstrate the superiority of the proposed new sequential processing in terms of better accuracy and consistency than the conventional sequential filter based on measurement decorrelation.
基金supported by the National Natural Science Foundation of China(6110216461272224)the Scientific Research Fund of Hangzhou Normal University(2011QDL021)
文摘This paper presents a novel robust S transform algorithm based on the clipping method to process signals corrupted by impulsive noise.The proposed algorithm is introduced to determine the clipping threshold value according to the characteristics of the signal samples.Signals in various impulsive noise models are considered to illustrate that the robust S transform can achieve better performance than the standard S transform.Moreover,mean square errors for instantaneous frequency estimation of the robust S transform are compared with that of the standard S transform,showing that the robust S transform can achieve significantly improved instantaneous frequency estimation for the signals in impulsive noise.
基金Project(2011CB013804)supported by the National Basic Research Program of China
文摘A methodology, termed estimation error minimization(EEM) method, was proposed to determine the optimal number and locations of sensors so as to better estimate the vibration response of the entire structure. Utilizing the limited sensor measurements, the entire structure response can be estimated based on the system equivalent reduction-expansion process(SEREP) method. In order to compare the capability of capturing the structural vibration response with other optimal sensor placement(OSP) methods, the effective independence(EI) method, modal kinetic energy(MKE) method and modal assurance criterion(MAC) method, were also investigated. A statistical criterion, root mean square error(RMSE), was employed to assess the magnitude of the estimation error between the real response and the estimated response. For investigating the effectiveness and accuracy of the above OSP methods, a 31-bar truss structure is introduced as a simulation example. The analysis results show that both the maximum and mean of the RMSE value obtained from the EEM method are smaller than those from other OSP methods, which indicates that the optimal sensor configuration obtained from the EEM method can provide a more accurate estimation of the entire structure response compared with the EI, MKE and MAC methods.
基金This project was supported by the Natural Science Foundation of Shaanxi Province.
文摘High-speed magnitude approximation algorithms for complex vectors are discussed intensively. The performance and the convergence speed of these approximation algorithms are analyzed. For the polygon fitting algorithms, the approximation formula under the least mean square error criterion is derived. For the iterative algorithms, a modified CORDIC (coordinate rotation digital computer) algorithm is developed. This modified CORDIC algorithm is proved to be with a maximum relative error about one half that of the original CORDIC algorithm. Finally, the effects of the finite register length on these algorithms are also concerned, which shows that 9 to 12-bit coefficients are sufficient for practical applications.