A new kind of combining forecasting model based on the generalized weighted functional proportional mean is proposed and the parameter estimation method of its weighting coefficients by means of the algorithm of quadr...A new kind of combining forecasting model based on the generalized weighted functional proportional mean is proposed and the parameter estimation method of its weighting coefficients by means of the algorithm of quadratic programming is given. This model has extensive representation. It is a new kind of aggregative method of group forecasting. By taking the suitable combining form of the forecasting models and seeking the optimal parameter, the optimal combining form can be obtained and the forecasting accuracy can be improved. The effectiveness of this model is demonstrated by an example.展开更多
本文采用奇异谱分析(S ingu lar Spectrum A na lys is,SSA)方法对原始降水序列重构,并用均生函数(M eanG enerating Function,M GF)方法对重构系列构造延拓矩阵,以此作为自变量,原始降水序列作为因变量,再利用偏最小二乘法提取对因变...本文采用奇异谱分析(S ingu lar Spectrum A na lys is,SSA)方法对原始降水序列重构,并用均生函数(M eanG enerating Function,M GF)方法对重构系列构造延拓矩阵,以此作为自变量,原始降水序列作为因变量,再利用偏最小二乘法提取对因变量影响强的成分作为神经网络的输入因子,原始序列作为输出因子,建立神经网络预测模型。通过对广西全区6月份降水量进行实际建模并与其它方法进行对比预测试验,结果表明,基于SSA-M GF的偏最小二乘回归神经网络预测模型较好,是一种具有较高应用价值的预测方法。展开更多
A generalization of the linguistic aggregation functions (or operators) is presented by using generalized and quasiarithmetic means. Firstly, the linguistic weighted generalized mean (LWGM) and the linguistic gene...A generalization of the linguistic aggregation functions (or operators) is presented by using generalized and quasiarithmetic means. Firstly, the linguistic weighted generalized mean (LWGM) and the linguistic generalized ordered weighted averaging (LGOWA) operator are introduced. These aggregation functions use linguistic information and generalized means in the weighted average (WA) and in the ordered weighted averaging (OWA) function. They are very useful for uncertain situations where the available information cannot be assessed with numerical values but it is possible to use linguistic assessments. These aggregation operators generalize a wide range of aggregation operators that use linguistic information such as the linguistic generalized mean (LGM), the linguistic OWA (LOWA) operator and the linguistic or- dered weighted quadratic averaging (LOWQA) operator. We also introduce a further generalization by using quasi-arithmetic means instead of generalized means obtaining the quasi-LWA and the quasi-LOWA operator. Finally, we develop an application of the new approach where we analyze a decision making problem regarding the selection of strategies.展开更多
工业数据由于技术故障和人为因素通常导致数据异常,现有基于约束的方法因约束阈值设置的过于宽松或严格会导致修复错误,基于统计的方法因平滑修复机制导致对时间步长较远的异常值修复准确度较低.针对上述问题,提出了基于奖励机制的最小...工业数据由于技术故障和人为因素通常导致数据异常,现有基于约束的方法因约束阈值设置的过于宽松或严格会导致修复错误,基于统计的方法因平滑修复机制导致对时间步长较远的异常值修复准确度较低.针对上述问题,提出了基于奖励机制的最小迭代修复和改进WGAN混合模型的时序数据修复方法.首先,在预处理阶段,保留异常数据,进行信息标注等处理,从而充分挖掘异常值与真实值之间的特征约束.其次,在噪声模块提出了近邻参数裁剪规则,用于修正最小迭代修复公式生成的噪声向量.将其传递至模拟分布模块的生成器中,同时设计了一个动态时间注意力网络层,用于提取时序特征权重并与门控循环单元串联组合捕捉不同步长的特征依赖,并引入递归多步预测原理共同提升模型的表达能力;在判别器中设计了Abnormal and Truth奖励机制和Weighted Mean Square Error损失函数共同反向优化生成器修复数据的细节和质量.最后,在公开数据集和真实数据集上的实验结果表明,该方法的修复准确度与模型稳定性显著优于现有方法.展开更多
文摘A new kind of combining forecasting model based on the generalized weighted functional proportional mean is proposed and the parameter estimation method of its weighting coefficients by means of the algorithm of quadratic programming is given. This model has extensive representation. It is a new kind of aggregative method of group forecasting. By taking the suitable combining form of the forecasting models and seeking the optimal parameter, the optimal combining form can be obtained and the forecasting accuracy can be improved. The effectiveness of this model is demonstrated by an example.
文摘本文采用奇异谱分析(S ingu lar Spectrum A na lys is,SSA)方法对原始降水序列重构,并用均生函数(M eanG enerating Function,M GF)方法对重构系列构造延拓矩阵,以此作为自变量,原始降水序列作为因变量,再利用偏最小二乘法提取对因变量影响强的成分作为神经网络的输入因子,原始序列作为输出因子,建立神经网络预测模型。通过对广西全区6月份降水量进行实际建模并与其它方法进行对比预测试验,结果表明,基于SSA-M GF的偏最小二乘回归神经网络预测模型较好,是一种具有较高应用价值的预测方法。
基金supported by the Spanish Ministry of Education(JC2009-00189)the Spanish Ministry of Foreign Affairs(A/023879/09)+1 种基金the National Natural Science Foundation of China(71071002)Academic Innovation Team of Anhui University(KJTD001B,SKTD007B)
文摘A generalization of the linguistic aggregation functions (or operators) is presented by using generalized and quasiarithmetic means. Firstly, the linguistic weighted generalized mean (LWGM) and the linguistic generalized ordered weighted averaging (LGOWA) operator are introduced. These aggregation functions use linguistic information and generalized means in the weighted average (WA) and in the ordered weighted averaging (OWA) function. They are very useful for uncertain situations where the available information cannot be assessed with numerical values but it is possible to use linguistic assessments. These aggregation operators generalize a wide range of aggregation operators that use linguistic information such as the linguistic generalized mean (LGM), the linguistic OWA (LOWA) operator and the linguistic or- dered weighted quadratic averaging (LOWQA) operator. We also introduce a further generalization by using quasi-arithmetic means instead of generalized means obtaining the quasi-LWA and the quasi-LOWA operator. Finally, we develop an application of the new approach where we analyze a decision making problem regarding the selection of strategies.
文摘工业数据由于技术故障和人为因素通常导致数据异常,现有基于约束的方法因约束阈值设置的过于宽松或严格会导致修复错误,基于统计的方法因平滑修复机制导致对时间步长较远的异常值修复准确度较低.针对上述问题,提出了基于奖励机制的最小迭代修复和改进WGAN混合模型的时序数据修复方法.首先,在预处理阶段,保留异常数据,进行信息标注等处理,从而充分挖掘异常值与真实值之间的特征约束.其次,在噪声模块提出了近邻参数裁剪规则,用于修正最小迭代修复公式生成的噪声向量.将其传递至模拟分布模块的生成器中,同时设计了一个动态时间注意力网络层,用于提取时序特征权重并与门控循环单元串联组合捕捉不同步长的特征依赖,并引入递归多步预测原理共同提升模型的表达能力;在判别器中设计了Abnormal and Truth奖励机制和Weighted Mean Square Error损失函数共同反向优化生成器修复数据的细节和质量.最后,在公开数据集和真实数据集上的实验结果表明,该方法的修复准确度与模型稳定性显著优于现有方法.