雷达波束覆盖区域内风电场后向散射引起的杂波与气象目标回波具有类似的特性,进而影响气象目标参数估计的稳健性,导致气象雷达产生误检测与误识别。利用气象雷达二次产品(Level-Ⅱ)实测数据,基于最大后验概率(maximum a posteriori,MAP...雷达波束覆盖区域内风电场后向散射引起的杂波与气象目标回波具有类似的特性,进而影响气象目标参数估计的稳健性,导致气象雷达产生误检测与误识别。利用气象雷达二次产品(Level-Ⅱ)实测数据,基于最大后验概率(maximum a posteriori,MAP)算法实现风电场杂波抑制。在传统MAP算法基础上,考虑气象雷达和风电场位置、地形等因素对雷达波束的影响,并将其作为先验信息来选取有效的气象雷达高仰角扫描数据,以此来改善风电场杂波的抑制效果。针对高扫及低扫区域内径向速度变化较为剧烈所导致的MAP杂波抑制算法性能下降的问题,基于气象目标参数随距离均匀分布特性,用风电场周围未污染气象目标的径向速度作为先验信息,对传统MAP算法抑制后的径向速度进行修正。为定量评价风电场抑制算法的性能,给出了定量评价风电场杂波抑制效果的性能指标,并利用气象雷达不同体扫模式VCP(volume cover pattern)下的Level-Ⅱ数据对本文提出算法的有效性进行了验证。展开更多
针对传统Unscented卡尔曼滤波器(Unscented Kalman filter,UKF)在噪声先验统计未知时变情况下非线性滤波精度下降甚至发散的问题,设计了一种带噪声统计估计器的自适应UKF滤波算法.首先根据极大后验(Maximum a posterior,MAP)估计原理,...针对传统Unscented卡尔曼滤波器(Unscented Kalman filter,UKF)在噪声先验统计未知时变情况下非线性滤波精度下降甚至发散的问题,设计了一种带噪声统计估计器的自适应UKF滤波算法.首先根据极大后验(Maximum a posterior,MAP)估计原理,推导出一种次优无偏MAP常值噪声统计估计器;接着在此基础之上,采用指数加权的方法,给出了时变噪声统计估计器的递推公式;最后对自适应UKF算法进行了性能分析.相比于传统UKF,该自适应UKF算法在噪声统计未知时变情况下不仅滤波依然收敛,滤波精度及稳定性显著提高,而且其具有应对噪声变化的自适应能力.仿真实例验证了其有效性.展开更多
文摘雷达波束覆盖区域内风电场后向散射引起的杂波与气象目标回波具有类似的特性,进而影响气象目标参数估计的稳健性,导致气象雷达产生误检测与误识别。利用气象雷达二次产品(Level-Ⅱ)实测数据,基于最大后验概率(maximum a posteriori,MAP)算法实现风电场杂波抑制。在传统MAP算法基础上,考虑气象雷达和风电场位置、地形等因素对雷达波束的影响,并将其作为先验信息来选取有效的气象雷达高仰角扫描数据,以此来改善风电场杂波的抑制效果。针对高扫及低扫区域内径向速度变化较为剧烈所导致的MAP杂波抑制算法性能下降的问题,基于气象目标参数随距离均匀分布特性,用风电场周围未污染气象目标的径向速度作为先验信息,对传统MAP算法抑制后的径向速度进行修正。为定量评价风电场抑制算法的性能,给出了定量评价风电场杂波抑制效果的性能指标,并利用气象雷达不同体扫模式VCP(volume cover pattern)下的Level-Ⅱ数据对本文提出算法的有效性进行了验证。
文摘针对传统Unscented卡尔曼滤波器(Unscented Kalman filter,UKF)在噪声先验统计未知时变情况下非线性滤波精度下降甚至发散的问题,设计了一种带噪声统计估计器的自适应UKF滤波算法.首先根据极大后验(Maximum a posterior,MAP)估计原理,推导出一种次优无偏MAP常值噪声统计估计器;接着在此基础之上,采用指数加权的方法,给出了时变噪声统计估计器的递推公式;最后对自适应UKF算法进行了性能分析.相比于传统UKF,该自适应UKF算法在噪声统计未知时变情况下不仅滤波依然收敛,滤波精度及稳定性显著提高,而且其具有应对噪声变化的自适应能力.仿真实例验证了其有效性.