基于增广矩阵束方法(Matrix Enhancement and Matrix Pencil,MEMP),以使用尽可能少的阵元逼近期望的方向图为目标,提出了一种求解阵元位置和设计激励幅度的新方法.首先对期望平面阵的方向图进行采样得到离散的数据集,再构造增广矩阵,对...基于增广矩阵束方法(Matrix Enhancement and Matrix Pencil,MEMP),以使用尽可能少的阵元逼近期望的方向图为目标,提出了一种求解阵元位置和设计激励幅度的新方法.首先对期望平面阵的方向图进行采样得到离散的数据集,再构造增广矩阵,对此增广矩阵进行奇异值分解(Singular Value Decomposition,SVD),确定逼近期望方向图所需的最小阵元数目;基于广义特征值分解求解两组特征值,并根据类基于旋转不变技术的信号参数估计(Estimating Signal Parameters Via RotationalInvariance Techniques,ESPRIT)对这两组特值配对;在最小二乘准则下求解稀布面阵的阵元位置和激励.仿真试验验证了该方法在稀布平面阵优化问题中的高效性和数值精度.展开更多
通过研究多输入多输出(Multiple input and multiple out,MIMO)雷达的角度估计算法,基于收发共址的十字阵MIMO雷达系统,将四元数理论应用到MIMO雷达角度中,提出了一种新的参数估计算法。通过构造四元数模型,结合增广矩阵束(Matrix enhan...通过研究多输入多输出(Multiple input and multiple out,MIMO)雷达的角度估计算法,基于收发共址的十字阵MIMO雷达系统,将四元数理论应用到MIMO雷达角度中,提出了一种新的参数估计算法。通过构造四元数模型,结合增广矩阵束(Matrix enhancement and matrix pencil,MEMP)方法构造增广矩阵,并证明该矩阵的秩等于目标总数,且不受目标相干性的影响,结合ESPRIT算法实现了对MIMO相干目标的角度估计。算法无需谱峰搜索,能够实现参数的自动配对,同时降低了运算复杂度。仿真实验进一步验证了算法的有效性。展开更多
提出一种基于交替方向乘子法的(Alternating Direction Method of Multipliers,ADMM)稀疏非负矩阵分解语音增强算法,该算法既能克服经典非负矩阵分解(Nonnegative Matrix Factorization,NMF)语音增强算法存在收敛速度慢、易陷入局部最...提出一种基于交替方向乘子法的(Alternating Direction Method of Multipliers,ADMM)稀疏非负矩阵分解语音增强算法,该算法既能克服经典非负矩阵分解(Nonnegative Matrix Factorization,NMF)语音增强算法存在收敛速度慢、易陷入局部最优等问题,也能发挥ADMM分解矩阵具有的强稀疏性。算法分为训练和增强两个阶段:训练时,采用基于ADMM非负矩阵分解算法对噪声频谱进行训练,提取噪声字典,保存其作为增强阶段的先验信息;增强时,通过稀疏非负矩阵分解算法,从带噪语音频谱中对语音字典和语音编码进行估计,重构原始干净的语音,实现语音增强。实验表明,该算法速度更快,增强后语音的失真更小,尤其在瞬时噪声环境下效果显著。展开更多
文摘基于增广矩阵束方法(Matrix Enhancement and Matrix Pencil,MEMP),以使用尽可能少的阵元逼近期望的方向图为目标,提出了一种求解阵元位置和设计激励幅度的新方法.首先对期望平面阵的方向图进行采样得到离散的数据集,再构造增广矩阵,对此增广矩阵进行奇异值分解(Singular Value Decomposition,SVD),确定逼近期望方向图所需的最小阵元数目;基于广义特征值分解求解两组特征值,并根据类基于旋转不变技术的信号参数估计(Estimating Signal Parameters Via RotationalInvariance Techniques,ESPRIT)对这两组特值配对;在最小二乘准则下求解稀布面阵的阵元位置和激励.仿真试验验证了该方法在稀布平面阵优化问题中的高效性和数值精度.
文摘通过研究多输入多输出(Multiple input and multiple out,MIMO)雷达的角度估计算法,基于收发共址的十字阵MIMO雷达系统,将四元数理论应用到MIMO雷达角度中,提出了一种新的参数估计算法。通过构造四元数模型,结合增广矩阵束(Matrix enhancement and matrix pencil,MEMP)方法构造增广矩阵,并证明该矩阵的秩等于目标总数,且不受目标相干性的影响,结合ESPRIT算法实现了对MIMO相干目标的角度估计。算法无需谱峰搜索,能够实现参数的自动配对,同时降低了运算复杂度。仿真实验进一步验证了算法的有效性。
文摘提出一种基于交替方向乘子法的(Alternating Direction Method of Multipliers,ADMM)稀疏非负矩阵分解语音增强算法,该算法既能克服经典非负矩阵分解(Nonnegative Matrix Factorization,NMF)语音增强算法存在收敛速度慢、易陷入局部最优等问题,也能发挥ADMM分解矩阵具有的强稀疏性。算法分为训练和增强两个阶段:训练时,采用基于ADMM非负矩阵分解算法对噪声频谱进行训练,提取噪声字典,保存其作为增强阶段的先验信息;增强时,通过稀疏非负矩阵分解算法,从带噪语音频谱中对语音字典和语音编码进行估计,重构原始干净的语音,实现语音增强。实验表明,该算法速度更快,增强后语音的失真更小,尤其在瞬时噪声环境下效果显著。