期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Bayesian-MCMC-based parameter estimation of stealth aircraft RCS models 被引量:2
1
作者 夏威 代小霞 冯圆 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第12期616-622,共7页
When modeling a stealth aircraft with low RCS(Radar Cross Section), conventional parameter estimation methods may cause a deviation from the actual distribution, owing to the fact that the characteristic parameters ... When modeling a stealth aircraft with low RCS(Radar Cross Section), conventional parameter estimation methods may cause a deviation from the actual distribution, owing to the fact that the characteristic parameters are estimated via directly calculating the statistics of RCS. The Bayesian–Markov Chain Monte Carlo(Bayesian-MCMC) method is introduced herein to estimate the parameters so as to improve the fitting accuracies of fluctuation models. The parameter estimations of the lognormal and the Legendre polynomial models are reformulated in the Bayesian framework. The MCMC algorithm is then adopted to calculate the parameter estimates. Numerical results show that the distribution curves obtained by the proposed method exhibit improved consistence with the actual ones, compared with those fitted by the conventional method. The fitting accuracy could be improved by no less than 25% for both fluctuation models, which implies that the Bayesian-MCMC method might be a good candidate among the optimal parameter estimation methods for stealth aircraft RCS models. 展开更多
关键词 stealth aircraft radar cross section fluctuation model Bayesian–markov chain monte carlo
在线阅读 下载PDF
Comparisons of Maximum Likelihood Estimates and Bayesian Estimates for the Discretized Discovery Process Model
2
作者 GaoChunwen XuJingzhen RichardSinding-Larsen 《Petroleum Science》 SCIE CAS CSCD 2005年第2期45-56,共12页
A Bayesian approach using Markov chain Monte Carlo algorithms has been developed to analyze Smith’s discretized version of the discovery process model. It avoids the problems involved in the maximum likelihood method... A Bayesian approach using Markov chain Monte Carlo algorithms has been developed to analyze Smith’s discretized version of the discovery process model. It avoids the problems involved in the maximum likelihood method by effectively making use of the information from the prior distribution and that from the discovery sequence according to posterior probabilities. All statistical inferences about the parameters of the model and total resources can be quantified by drawing samples directly from the joint posterior distribution. In addition, statistical errors of the samples can be easily assessed and the convergence properties can be monitored during the sampling. Because the information contained in a discovery sequence is not enough to estimate all parameters, especially the number of fields, geologically justified prior information is crucial to the estimation. The Bayesian approach allows the analyst to specify his subjective estimates of the required parameters and his degree of uncertainty about the estimates in a clearly identified fashion throughout the analysis. As an example, this approach is applied to the same data of the North Sea on which Smith demonstrated his maximum likelihood method. For this case, the Bayesian approach has really improved the overly pessimistic results and downward bias of the maximum likelihood procedure. 展开更多
关键词 Bayesian estimate maximum likelihood estimate discovery process model markov chain monte carlo (MCMC) North Sea
在线阅读 下载PDF
Convergence Diagnostics for Gibbs Sampler via Maximum Likelihood Estimation
3
作者 程杞元 林秀光 《Journal of Beijing Institute of Technology》 EI CAS 2003年第2期212-215,共4页
A diagnostic procedure based on maximum likelihood estimation, to study the convergence of the Markov chain produced by Gibbs sampler, is presented. The unbiasedness, consistent and asymptotic normality are considered... A diagnostic procedure based on maximum likelihood estimation, to study the convergence of the Markov chain produced by Gibbs sampler, is presented. The unbiasedness, consistent and asymptotic normality are considered for the estimation of the parameters produced by the procedure. An example is provided to illustrate the procedure, and the numerical result is consistent with the theoretical one. 展开更多
关键词 markov chain monte carlo Gibbs sampler maximum likelihood estimation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部