目的探讨基于Markov Chain Monte Carlo(MCMC)模型的多重估算法在处理医院调查资料缺失数据中的应用。方法运用SAS9.2编写程序,在分析数据的分布类型和缺失机制的基础上,采用MCMC法对缺失数据进行多次填补和联合统计推断,分析多重估算...目的探讨基于Markov Chain Monte Carlo(MCMC)模型的多重估算法在处理医院调查资料缺失数据中的应用。方法运用SAS9.2编写程序,在分析数据的分布类型和缺失机制的基础上,采用MCMC法对缺失数据进行多次填补和联合统计推断,分析多重估算法的优势。结果数据服从多元正态分布与随机缺失,采用MCMC法填补10次所得的结果最佳。结论多重估算既可反映缺失数据的不确定性,又可充分利用现有资料的信息、提高统计效率、对模型的估计结果更加可信,是处理缺失数据的有效方法。展开更多
文摘目的探讨基于Markov Chain Monte Carlo(MCMC)模型的多重估算法在处理医院调查资料缺失数据中的应用。方法运用SAS9.2编写程序,在分析数据的分布类型和缺失机制的基础上,采用MCMC法对缺失数据进行多次填补和联合统计推断,分析多重估算法的优势。结果数据服从多元正态分布与随机缺失,采用MCMC法填补10次所得的结果最佳。结论多重估算既可反映缺失数据的不确定性,又可充分利用现有资料的信息、提高统计效率、对模型的估计结果更加可信,是处理缺失数据的有效方法。