期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Magnetic field-dependent inductance properties based on magnetorheological elastomer 被引量:2
1
作者 JU Ben-xiang WANG Xiao-long 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1075-1084,共10页
Magnetorheological(MR)materials are a class of smart material,whose the mechanical/rheological state can be controlled under a magnetic field.Magnetorheological materials are typically fluids,gels,or elastomers.In thi... Magnetorheological(MR)materials are a class of smart material,whose the mechanical/rheological state can be controlled under a magnetic field.Magnetorheological materials are typically fluids,gels,or elastomers.In this study,anisotropic and isotropic magneto-rheological elastomer(MRE)samples were fabricated using a silicone rubber matrix with carbonyl iron particles as filler particles.The magnetic field-dependent inductance properties of these samples were studied using inductors specially designed for the analysis.The effect of the filler particle content,fabrication conditions,and inductance properties were characterized using a self-built system in both constant and transient magnetic fields.These factors show a significant effect on the inductance properties of the MRE inductor under an applied magnetic field.The anisotropic MRE inductor was more sensitive than the inductor based on an isotropic MRE.Owing to the presence of a constant magnetic field,the inductance value of the MRE inductor decreased with an increase in the external magnetic field.An attempt in elucidation of the mechanism is reported here.This study may enable the MRE to be widely used in practical applications such as monitoring magnetic field or detecting the filler particle content inside MR materials. 展开更多
关键词 magnetorheological elastomer magnetorheological elastomer(MRE)inductor INDUCTANCE constant magnetic field transient magnetic field
在线阅读 下载PDF
Magnetic field properties caused by stress concentration 被引量:14
2
作者 黄松岭 李路明 +1 位作者 施克仁 王晓凤 《Journal of Central South University of Technology》 2004年第1期23-26,共4页
Measurements of the effects of tensile stress on magnetic field properties, infrared thermography and (acoustic) emission of a cuboid sample with an elliptical hole in its center were presented. The tensile stress was... Measurements of the effects of tensile stress on magnetic field properties, infrared thermography and (acoustic) emission of a cuboid sample with an elliptical hole in its center were presented. The tensile stress was applied perpendicularly to the sample by electro-tension machine according to a step-loading curve. The changes of the sample temperature was recorded by an infrared thermography system and the noise of domain reversal was inspected by two acoustic probes, which were placed on each end of the sample near the collets of the electro-tension machine, when the sample was in loading process. The magnetic fields on the surface of the sample were inspected with 8 mm lift-off when the loads were held. Valuable information about the changes of domains was obtained from analysis of acoustic emission signals in loading process. Infrared images of the sample provided complementary information about the state of the sample. The results show that stress concentration in ferromagnetic material affects the direction and structure of domain and generates net magnetic moment on its surface. The distribution and magnitude of the net magnetic moment are correlative with those of stress. 展开更多
关键词 magnetic field testing stress concentration THERMOGRAPHY acoustic emission DOMAIN
在线阅读 下载PDF
Flow and natural convection heat transfer characteristics of non-Newtonian nanofluid flow bounded by two infinite vertical flat plates in presence of magnetic field and thermal radiation using Galerkin method 被引量:6
3
作者 Peyman MAGHSOUDI Gholamreza SHAHRIARI +1 位作者 Hamed RASAM Sadegh SADEGHI 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第5期1294-1305,共12页
The main goal of this paper is to investigate natural convective heat transfer and flow characteristics of non-Newtonian nanofluid streaming between two infinite vertical flat plates in the presence of magnetic field ... The main goal of this paper is to investigate natural convective heat transfer and flow characteristics of non-Newtonian nanofluid streaming between two infinite vertical flat plates in the presence of magnetic field and thermal radiation.Initially,a similarity transformation is used to convert momentum and energy conservation equations in partial differential forms into non-linear ordinary differential equations (ODE) applying meaningful boundary conditions.In order to obtain the non-linear ODEs analytically,Galerkin method (GM) is employed.Subsequently,the ODEs are also solved by a reliable numerical solution.In order to test the accuracy,precision and reliability of the analytical method,results of the analytical analysis are compared with the numerical results.With respect to the comparisons,fairly good compatibilities with insignificant errors are observed.Eventually,the impacts of effective parameters including magnetic and radiation parameters and nanofluid volume fraction on the velocity,skin friction coefficient and Nusselt number distributions are comprehensively described.Based on the results,it is revealed that with increasing the role of magnetic force,velocity profile,skin friction coefficient and thermal performance descend.Radiation parameter has insignificant influence on velocity profile while it obviously has augmentative and decreasing effects on skin friction and Nusselt number,respectively. 展开更多
关键词 non-Newtonian flow nanofluid flow Galerkin method magnetic field radiation
在线阅读 下载PDF
Optimal Design on the Magnetic Field of the High-speed Response Solenoid Valve 被引量:2
4
作者 TAO Gang, CHEN Hui-yan, JIN Ya-ying, HE Zhong-bo (Lab of Vehicle Electronic Engineering, School of Vehicle & Transportat ion Engineering, Beijing Institute of Technology, Beijing 100081, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期160-161,共2页
As an integrated control unit that directly transfo rm s digital electric signals into analogy hydraulic signals, High-speed response solenoid valve (HSV) plays an important role in determining an electro-hydrauli c a... As an integrated control unit that directly transfo rm s digital electric signals into analogy hydraulic signals, High-speed response solenoid valve (HSV) plays an important role in determining an electro-hydrauli c automatic system’s overall performance. In the process of designing an HSV, o ne should well understand that various soft magnetic material properties and geo metries greatly affect HSV’s magnetic field design that accordingly has a direc t influence on HSV’s electric performance. As an approach of improving HSV perf ormance, this paper presents an optimal design method on HSV’s magnetic field b y making a full consideration of the effects of various soft magnetic material a nd geometries. The proposed optimal design method, based on HSV’s three-dimens ion solid modeling with the PRO/E software, simplifying from the previous three -dimension solid model to the axially symmetric plane model of the magnetic fie ld and the consequent the magnetic finite element method simulating within ANSYS analysis environment for obtaining accurate results on the distribution of HSV ’s magnetic field and flux-line as well as the magnetic force, can achieve lar ger magnetic force and lower power of an HSV by adjusting the structure paramete rs of the solenoid valve and selecting various soft magnetic materials which are of different B-H (flux density vs. field intensity) curves. Considering the no nlinearity and saturation of various soft magnetic materials, this paper process es the nonlinearity simulated calculation and experiment measure of three soft m agnetic materials and different structure parameters. The comparison of the simu lating and experimenting results proves that the simulating calculation and the proposed optimal design method are effective in HSV’s designing and its perform ance prediction. The researching results show that, for HSV’s designing, the pr oposed optimal design method can well simulate HSV’s the magnetic field, enhanc e the reliability and accuracy, reduce the cost, shorten the cycle, and henc e has practical value for engineering purpose. 展开更多
关键词 modeling magnetic field simulation optimal des ign
在线阅读 下载PDF
Effects of turbulator shape,inclined magnetic field,and mixed convection nanofluid flow on thermal performance of micro-scale inclined forward-facing step 被引量:2
5
作者 E.JALIL G.R.MOLAEIMANESH 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第11期3310-3326,共17页
This investigation numerically examined the combined impacts of different turbulator shapes,Al_(2)O_(3)/water nanofluid,and inclined magnetic field on the thermal behavior of micro-scale inclined forward-facing step(M... This investigation numerically examined the combined impacts of different turbulator shapes,Al_(2)O_(3)/water nanofluid,and inclined magnetic field on the thermal behavior of micro-scale inclined forward-facing step(MSIFFS).The length and height for all turbulators were considered 0.0979 and 0.5 mm,respectively,and the Reynolds number varied from 5000 to 10000.In order to compare the skin friction coefficient(SFC) and the heat transfer rate(HTR)simultaneously,the thermal performance factor parameter(TPF) was selected.The results show that all considered cases equipped with turbulators were thermodynamically more advantageous over the simple MSIFFS.Besides,using Al_(2)O_(3)/water nanofluid with different nanoparticles volume fractions(NVF) in the presence of inclined magnetic field(IMF)increased HTR.With an increment of NVF from 1% to 4% and magnetic field density(MFD) from 0.002 to 0.008 T,HTR and subsequently TPF improved.The best result was observed for MSIFFS equipped with a trapezoidal-shaped turbulator with 4% Al_(2)O_(3) in the presence of IMF(B=0.008 T).The TPF increased with the augmentation of Re,and the maximum value of it was 5.2366 for MSIFFS equipped with a trapezoidal-shaped turbulator with 4% Al_(2)O_(3),B=0.008 T,and Re=10000. 展开更多
关键词 microchannel forward-facing step TURBULATOR inclined magnetic field heat transfer enhancement
在线阅读 下载PDF
Significance of induced magnetic field and variable thermal conductivity on stagnation point flow of second grade fluid 被引量:2
6
作者 A.A.KHAN S.ILYAS +1 位作者 T.ABBAS R.ELLAHI 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第11期3381-3390,共10页
In this study,the stagnation point transport of second grade fluid with linear stretching under the effects of variable thermal conductivity is considered.Induced magnetic field impact is also incorporated.The nonline... In this study,the stagnation point transport of second grade fluid with linear stretching under the effects of variable thermal conductivity is considered.Induced magnetic field impact is also incorporated.The nonlinear set of particle differential equations is converted into set of ordinary differential equations through appropriate transformation.The resulting equations are then resolved by optimal homotopy analysis method.The effect of pertinent parameters of interest on skin friction coefficient,temperature,induced magnetic field,velocity and local Nusselt number is inspected by generating appropriate plots.For numerical results,the built-in bvp4 c technique in computational software MATLAB is used for the convergence and residual errors of obtained series solution.It is perceived that the induced magnetic field is intensified by increasing β.It can also be observed that skin friction coefficient enhances with increasing value of magnetic parameter depending on the stretching ratio a/c.For the validness of the obtained results,a comparison has been made and an excellent agreement of current study with existing literature is found. 展开更多
关键词 stagnation point variable thermal conductivity induced magnetic field second grade fluid
在线阅读 下载PDF
Effects of intense magnetic field on digestion and settling performances of bauxite 被引量:1
7
作者 吕国志 张廷安 +4 位作者 王小晓 张旭华 刘燕 赵秋月 豆志河 《Journal of Central South University》 SCIE EI CAS 2014年第6期2168-2175,共8页
The effects of magnetic field intensity, roasting temperature and roasting time on digestion rate and settling performance of bauxite with different iron contents were investigated systematically. The results indicate... The effects of magnetic field intensity, roasting temperature and roasting time on digestion rate and settling performance of bauxite with different iron contents were investigated systematically. The results indicate that such magnetic treatment can profoundly change the microstructure and digestion performance of bauxite. For the two samples carrying different iron contents, phase transformation of the aluminum oxide phase proceeds faster in the high iron bauxite than the low one. The optimal pretreatment conditions of low iron bauxite are roasting temperature 550 ℃ and magnetic field intensity 6 T, while for high iron bauxite are 500 ℃ and 9 T. The digestion rate of alumina can reach 95% and 92% at digestion temperature of 190 ℃ and 250 ℃. The settling performances of roasted ore by intense magnetic field after digestion are enhanced through pretreatment. 展开更多
关键词 BAUXITE intense magnetic field phase transformation digestion performance settling performance
在线阅读 下载PDF
Investigate the effects of magnetic fields on the penetration ability of a shaped charge jet at different standoffs 被引量:1
8
作者 Bin Ma Zheng-xiang Huang +3 位作者 Zhong-wei Guan Xin Jia Xu-dong Zu Qiang-qiang Xiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第5期1722-1730,共9页
The influence of a magnetic field on the stability of a shaped charge jet is experimentally investigated at standoffs of 490,650 and 800 mm.The experimental results without and with the magnetic field are compared in ... The influence of a magnetic field on the stability of a shaped charge jet is experimentally investigated at standoffs of 490,650 and 800 mm.The experimental results without and with the magnetic field are compared in terms of the shaped charge jet form,stability and penetration ability.A theoretical model based on one-dimension fluid dynamics is then developed to assess the depth of penetration of the shaped charge at those three standoffs and magnetic conditions.The results show that the penetration capability can be enhanced in more than 70%by the magnetic field.The theoretical calculations are compared with the experimental results with reasonably good correlation.In addition,the parameters introduced in the theory are discussed together with the experiments at three standoffs studied. 展开更多
关键词 Shaped charge jet STABILITY PENETRATION magnetic field Coupling mechanism
在线阅读 下载PDF
Kinetics modeling for austenite transformation in AISI 1045 steel during rapid heating under high frequency electromagnetic field 被引量:1
9
作者 GAO Kai GUO Jian-zhong QIN Xun-peng 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第5期1543-1556,共14页
To investigate the effect of alternating magnetic field on austenite transformation process in the case of rapid heating,the austenite kinetics model of AISI 1045 steel was built for spot continual induction hardening... To investigate the effect of alternating magnetic field on austenite transformation process in the case of rapid heating,the austenite kinetics model of AISI 1045 steel was built for spot continual induction hardening(SCIH)process.The results shows that the effect of alternating magnetic field on austenite transformation fraction reaches the maximum(about 3%)when heating rate is the lowest.Relatively low magnetic flux density still has a certain effect on the austenite transformation process during the SCIH process.Concave surface structure can reduce the influence scope of alternating magnetic field on surface in all cases and the minimum influence scope appears when the feed path of inductor is longitudinal.Convex surface structure can minimize the influence scope of alternating magnetic field in depth when the feed path of inductor is longitudinal.The austenite distribution of transitional region on surface for horizontal movement is more uniform than that for longitudinal movement.The austenite distribution of transitional region in depth for longitudinal movement is more uniform than that for horizontal movement.The simulated results are consistent with the experimental results and the austenite transformation kinetics model developed for SCIH process is valid. 展开更多
关键词 alternating magnetic field AUSTENITE heating rate feed path CURVATURE AISI 1045 steel
在线阅读 下载PDF
Effect of magnetic field on property and structure of polyaniline doped with multiple sulfonic acids 被引量:1
10
作者 马利 黄可龙 +3 位作者 陈超 甘孟瑜 卢苇 陈奉强 《Journal of Central South University of Technology》 EI 2008年第4期479-483,共5页
Polyaniline(PAn)doped with multiple sulfonic acid system of dodecylbenzenesulfonic acid(DBSA)and sulfosalicylic acid(SSA)was synthesized by emulsion polymerization using ammonium persulfate(APS)as an oxidizing agent i... Polyaniline(PAn)doped with multiple sulfonic acid system of dodecylbenzenesulfonic acid(DBSA)and sulfosalicylic acid(SSA)was synthesized by emulsion polymerization using ammonium persulfate(APS)as an oxidizing agent in the presence and the absence of a constant magnetic field(MF)of 0.8 T.The structure and properties of the PAn were characterized by X-ray diffractometer(XRD),thermogravimetric apparatus(TGA),FT-IR spectroscope(FT-IR)and four probe digital multimeter.The results indicate that,when the molar ratio of DBSA to SSA is 1/3,that of dopant to An is 3/2,that of APS to An is 4/5 in the synthesizing media,and the doping time is 3 h,the conductivity of the PAn synthesized in the presence of the MF of 0.8 T reaches 5.88 S/cm,which is higher than that of the PAn synthesized in the absence of the MF.The thermal stability,the crystallinity and the doping degree of the PAn synthesized in the presence of the MF are also improved.MF not only enhances the conductivity,but also reduces the doping time,the dosage of the dopant and the oxidizing agent when the conductivity reaches the maximum. 展开更多
关键词 POLYANILINE magnetic field emulsion polymerization multiple sulfonic acids
在线阅读 下载PDF
Magnetic field assisted electrocatalytic oxidation of organic pollutants in electroplating wastewater 被引量:1
11
作者 王震 叶宽伟 +4 位作者 杨哲 夏哲韬 骆沁沁 万先凯 史惠祥 《Journal of Central South University》 SCIE EI CAS 2012年第6期1679-1684,共6页
To degrade the organic compounds in the electroplating wastewater,magnetic field was tentatively introduced into electrocatalytic oxidation on Ti-PbO2 anode.The magnetic field assisted electrocatalytic oxidation can p... To degrade the organic compounds in the electroplating wastewater,magnetic field was tentatively introduced into electrocatalytic oxidation on Ti-PbO2 anode.The magnetic field assisted electrocatalytic oxidation can promote anion movement and the generation of active species,resulting more organic compounds to be oxidized and degraded.Oxidation parameters such as treatment time,current density and initial pH of the wastewater were systematically discussed and optimized.The mineralization of organic compounds is improved by over 15% under a magnetic density of 22 mT while the current density is 50 A/m2,pH is 1.8 and the reaction time is 1.5 h.The results indicate that the magnetic field assisted electrocatalytic oxidation has considerable potential in electroplating wastewater treatment. 展开更多
关键词 magnetic field electrocatalytic oxidation electroplating wastewater
在线阅读 下载PDF
Research on the Static Magnetic Field of Ships with Corrosion and Anticorrosion Efficacy Using Electric Dipole Model
12
作者 陈聪 李定国 龚沈光 《Defence Technology(防务技术)》 SCIE EI CAS 2010年第2期133-139,共7页
In the case of three-layered(air-seawater-seabed)model,the analytical expressions of the static electric and static magnetic field produced by the static electric dipole located in seawater were derived by using the m... In the case of three-layered(air-seawater-seabed)model,the analytical expressions of the static electric and static magnetic field produced by the static electric dipole located in seawater were derived by using the mirror image theory.Combined with the distribution of the underwater electric potential measured in laboratory,an electric dipole model for physical scale of ship was established and the distribution characteristics of an actual ship' s corrosion related magnetic field were obtained.Based on established models,theoretical analysis and calculation were made to catch out the distribution characteristics of static magnetic field related with corrosion and anticorrosion,which can not be measured directly in seawater.The results show that the static magnetic field related with corrosion and anticorrosion is a kind of noteworthy obstacle signal for degaussed ships. 展开更多
关键词 weaponry engineering corrosion related magnetic field static electric field underwater electric potential mirror image theory electric dipole model
在线阅读 下载PDF
Enhanced photocatalytic CO_(2)reduction performance in Nidoped perovskite nanocrystals controlled by magnetic fields
13
作者 Zhiwen Zhang Haoran Zhang +2 位作者 Huang Zhou Yu Zhang Yuen Wu 《中国科学技术大学学报》 CAS CSCD 北大核心 2024年第9期8-15,68,共9页
In recent years,magnetic fields have been widely applied in catalysis to increase the performance of electrocatalysis,photocatalysis,and thermocatalysis through an important noncontact way.This work demonstrated that ... In recent years,magnetic fields have been widely applied in catalysis to increase the performance of electrocatalysis,photocatalysis,and thermocatalysis through an important noncontact way.This work demonstrated that doping CsPbCl_(3) halide perovskite nanocrystals with nickel ions(Ni^(2+))and applying an external magnetic field can significantly enhance the performance of the photocatalytic carbon dioxide reduction reaction(CO_(2)RR).Compared with its counterpart,Ni-doped CsPbCl_(3) exhibits a sixfold increase in CO_(2)RR efficiency under a 500 mT magnetic field.Insights into the mechanism of this enhancement effect were obtained through photogenerated current density measurements and X-ray magnetic circular dichroism.The results illustrate that the significant enhancement in catalytic performance by the magnetic field is attributed to the synergistic effects of magnetic element doping and the external magnetic field,leading to reduced electron‒hole recombination and extended carrier lifetimes.This study provides an effective strategy for enhancing the efficiency of the photocatalytic CO_(2)RR by manipulating spin-polarized electrons in photocatalytic semiconductors via a noncontact external magnetic field. 展开更多
关键词 PHOTOCATALYSIS carbon dioxide reduction reaction(CO_(2)RR) PEROVSKITE spin polarization magnetic field
在线阅读 下载PDF
Novel magnetic field computation model in pattern classification
14
作者 Feng Pan Xiaoting Li +3 位作者 Ting Long Xiaohui Hu Tingting Ren Junping Du 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第5期862-869,共8页
Field computation, an emerging computation technique, has inspired passion of intelligence science research. A novel field computation model based on the magnetic field theory is constructed. The proposed magnetic fie... Field computation, an emerging computation technique, has inspired passion of intelligence science research. A novel field computation model based on the magnetic field theory is constructed. The proposed magnetic field computation (MFC) model consists of a field simulator, a non-derivative optimization algo- rithm and an auxiliary data processing unit. The mathematical model is deduced and proved that the MFC model is equivalent to a quadratic discriminant function. Furthermore, the finite element prototype is derived, and the simulator is developed, combining with particle swarm optimizer for the field configuration. Two benchmark classification experiments are studied in the numerical experiment, and one notable advantage is demonstrated that less training samples are required and a better generalization can be achieved. 展开更多
关键词 magnetic field computation (MFC) field computation particle swarm optimization (PSO) finite element analysis ma- chine learning and pattern classification.
在线阅读 下载PDF
Application of empirical mode decomposition in early diagnosis of magnetic memory signal 被引量:2
15
作者 冷建成 徐敏强 张嘉钟 《Journal of Central South University》 SCIE EI CAS 2010年第3期549-553,共5页
In order to eliminate noise interference of metal magnetic memory signal in early diagnosis of stress concentration zones and metal defects, the empirical mode decomposition method combined with the magnetic field gra... In order to eliminate noise interference of metal magnetic memory signal in early diagnosis of stress concentration zones and metal defects, the empirical mode decomposition method combined with the magnetic field gradient characteristic was proposed. A compressive force periodically acting upon a casing pipe led to appreciable deformation, and magnetic signals were measured by a magnetic indicator TSC-1M-4. The raw magnetic memory signal was first decomposed into different intrinsic mode functions and a residue, and the magnetic field gradient distribution of the subsequent reconstructed signal was obtained. The experimental results show that the gradient around 350 mm represents the maximum value ignoring the marginal effect, and there is a good correlation between the real maximum field gradient and the stress concentration zone. The wavelet transform associated with envelop analysis also exhibits this gradient characteristic, indicating that the proposed method is effective for early identifying critical zones. 展开更多
关键词 metal magnetic memory noise interference early diagnosis empirical mode decomposition magnetic field gradient stress concentration ZONES envelop analysis
在线阅读 下载PDF
Heat transfer intensification in hydromagnetic and radiative 3D unsteady flow regimes: A comparative theoretical investigation for aluminum and γ-aluminum oxides nanoparticles 被引量:2
16
作者 Naveed AHMED ADNAN +3 位作者 Umar KHAN Syed Zulfiqar Ali ZAIDI Imran FAISAL Syed Tauseef MOHYUD-DIN 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第5期1233-1249,共17页
This article investigates the colloidal study for water and ethylene glycol based nanofluids.The effects of Lorentz forces and thermal radiation are considered.The process of non-dimensionalities of governing equation... This article investigates the colloidal study for water and ethylene glycol based nanofluids.The effects of Lorentz forces and thermal radiation are considered.The process of non-dimensionalities of governing equations is carried out successfully by means of similarity variables.Then,the resultant nonlinear nature of flow model is treated numerically via Runge-Kutta scheme.The characteristics of various pertinent flow parameters on the velocity,temperature,streamlines and isotherms are discussed graphically.It is inspected that the Lorentz forces favors the rotational velocity and rotational parameter opposes it.Intensification in the nanofluids temperature is observed for volumetric fraction and thermal radiation parameter and dominating trend is noted for γ-aluminum nanofluid.Furthermore,for higher rotational parameter,reverse flow is investigated.To provoke the validity of the present work,comparison between current and literature results is presented which shows an excellent agreement.It is examined that rotation favors the velocity of the fluid and more radiative fluid enhances the fluid temperature.Moreover,it is inspected that upturns in volumetric fraction improves the thermal and electrical conductivities. 展开更多
关键词 conventional fluids aluminum and γ-aluminum oxides magnetic field thermal radiation Runge-Kutta scheme shear stress local rate of heat transfer
在线阅读 下载PDF
Effect of pulsed electromagnetic frequency on the microstructure, wear and solid erosion resistance of CrAlN coatings deposited by arc ion plating 被引量:1
17
作者 WANG Di LIN Song-sheng +5 位作者 LIU Ling-yun XUE Yu-na YANG Hong-zhi YANG Chao YANG Zhen ZHOU Ke-song 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第9期3065-3076,共12页
In this work,the chromium aluminum nitride(CrAlN)coatings were prepared on TC11 titanium alloy by composite magnetic field cathodic arc ion plating with controllable pulse electromagnetic combined with permanent magne... In this work,the chromium aluminum nitride(CrAlN)coatings were prepared on TC11 titanium alloy by composite magnetic field cathodic arc ion plating with controllable pulse electromagnetic combined with permanent magnet.The effects of electromagnetic frequency on the morphology,microstructure,nano-hardness and elastic modulus of the coatings were investigated by scanning electron microscope(SEM),X-ray diffraction(XRD)and nano-indenter.This paper has mainly studied the influence of CrAlN coatings which are prepared at various electromagnetic frequencies on the wear and erosion resistance through a series of wear and solid particle erosion experiments.It was found that the deposition rate of CrAlN coatings increases with the increase of electromagnetic frequency.And CrAlN coatings all preferentially grew along the(111)crystal plane.At 16.7 Hz,with the increase of pulsed electromagnetic frequency,the hardness is the highest(23.6 GPa)and the adhesion is the highest(41.5 N).In addition,the coating deposition exhibited the best wear and solid erosion resistance at 16.7 Hz and 33.3 Hz,the friction coefficient is about 0.35,and the erosion rate is about 0.2μm/g at 30°and less than 1μm/g at 90°,respectively.These results indicate that the CrAlN coating formed at an appropriate pulsed electromagnetic frequency can achieve excellent mechanical properties,wear and solid erosion resistance. 展开更多
关键词 CrAlN coating compound magnetic field pulse electromagnetic frequency mechanical property
在线阅读 下载PDF
Influence of Ti^(4+) doping on hyperfine field parameters of Mg_(0.95)Mn_(0.05)Fe_(2-2x)Ti_(2x)O_4(0≤x≤0.7)
18
作者 KUMAR S PRAKASH R +6 位作者 ALIMUDDIN CHOI H K KOO B H SONG J I CHUNG H JEONG H LEE C G 《Journal of Central South University》 SCIE EI CAS 2010年第6期1139-1143,共5页
The mixed spinel ferrite system Mg0.95Mn0.05Fe2-2xTizxO4 (0 ≤x ≤ 0.7) was synthesized by the conventional solid-state reaction technique. The effect of Ti^4+ doping was studied by using the Moessbauer spectroscop... The mixed spinel ferrite system Mg0.95Mn0.05Fe2-2xTizxO4 (0 ≤x ≤ 0.7) was synthesized by the conventional solid-state reaction technique. The effect of Ti^4+ doping was studied by using the Moessbauer spectroscopy measurements at room temperature. From the analysis of the Moessbauer spectra, it is observed that s-electron density, electric field gradient (EFG), quadrupole coupling constant (QCC) and the net hyperfine magnetic fields acting on the Moessbauer nuclei-FeA^3+ and FeB^3+ change with the increase of Ti^4+ doping in Mg0.95Mn0.05Fe2O4. The hyperfine magnetic field decreases with the increase of Ti^4+ doping. 展开更多
关键词 spinel ferrite Moessbauer spectroscopy hyperfine magnetic field isomer shift Ti^4+ doping
在线阅读 下载PDF
Magnetic Electrochemical Finishing Machining
19
作者 FANG Jian-cheng 1, JIN Zhu-ji 2, XU Wen-ji 2, SHI Yu-ying 1 (1. College of Mechanical Engineering and Automation, HQU, Quanzhou 362011, China 2. School of Mechanical Engineering, DUT, Dalian 116023, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期34-35,共2页
How to improve the finishing efficiency and surface roughness have been all along the objective of research in electrochemical polishing. However, the research activity, i.e. during electrochemical polishing, directly... How to improve the finishing efficiency and surface roughness have been all along the objective of research in electrochemical polishing. However, the research activity, i.e. during electrochemical polishing, directly introduce the magnetic field to study how the magnetic field influences on the finishing efficiency, quality and the electrochemical process in the field of finishing machining technology, is insufficient. When introducing additional magnetic field in the traditional electrochemical polishing, due to the co-action of Lorentz’ force and electric field force, the ions arriving the machined surface by way of a curvilinear motion result in the electric current density distribution on the surface even more non-uniform, then the dissolving velocity of the peak points or side faces and the diffusion velocity of the product are enhanced, and the forcible agitation is happened on the electrodes surface by magnetic field, the removal rate of peak points are still more greater, and efficiency is also still more higher. Compared with the electrochemical polishing, in the magnetic electrochemical finishing machining, the finishing speed at peak points is higher, but at valley points it is lower, therefore after machining, both the highness at peak points and finishing depth at valley points are smaller, the results are propitious to minish initial wear quantity caused by friction and wear when machined workpiece employing in practice, and increase contact stiffness of workpiece, and from the viewpoint of microcosmic theory, this phenomenon is also of advantage to reduce damage to substrate. It can also be seen from the equation presented in the paper that the track of ionic movement relates to the electrodes gap, potential and magnetic induction intensity and furthermore; under the given conditions, the movement also relate to the electrolyte. it can be inferred that there must be an optimum value in respect of the magnetic induction intensity influencing the efficiency of finishing machining, and at the same time, the rational matching among the interelectrodes voltage, gap sizes and magnetic induction intensity can raise the efficiency and quality as well as improve the surface roughness to the maximum. In short, the co-action of the Lorentz’ force and electric field force change the motion track of anions and make more uneven distribution of the electric current density on the anodes surface, thus the dissolving velocity and product diffusion velocity of the peak points or side faces of the anode are raised. All those and the forced agitation of magnetic field towards the electrode surface are the principal mechanism for surface finishing. This point has been proved from the experimental results in this paper. 展开更多
关键词 magnetic field electrochemical polishing machining efficiency
在线阅读 下载PDF
A compact high flux polarized neutron beam generator
20
作者 Jun Yuan Tengfei Ma +2 位作者 Jing Pan Jie Zhang Cheng Zhang 《Defence Technology(防务技术)》 2025年第7期437-446,共10页
This paper introduced a compact high flux polarized neutron beam generator scheme,which used air as the working medium and had low energy consumption.The neutron beam generator adopted a linear three compartment confi... This paper introduced a compact high flux polarized neutron beam generator scheme,which used air as the working medium and had low energy consumption.The neutron beam generator adopted a linear three compartment configuration,sequentially using nitrogen nucleus tandem near range accelerated polarization target spallation nuclear reaction technology,neutron multiplication technology,neutron beam polarization and near range acceleration technology,neutron focusing and shooting control technology.Through design and equivalent verification,it has been proven that the total length of the device does not exceed 5 m,the effective range can reach several hundred kilometers,the neutron flux at the muzzle is not less than 10^(25) n·cm^(-2)·s^(-1),which attenuates to 10^(10) n·cm^(-2)·s^(-1) at a distance of several 100 km,and this flux can effectively strike the target.It can be used as a defensive directed energy weapon with high energy density and has broad application prospects. 展开更多
关键词 High flux neutron beam DEFENSE Neutron polarization Neutron acceleration Strong magnetic field Pulsed power technology
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部