In this paper, methods are proposed and validated to determine low and high thresholds to segment out gray matter and white matter for MR images of different pulse sequences of human brain. First, a two-dimensional re...In this paper, methods are proposed and validated to determine low and high thresholds to segment out gray matter and white matter for MR images of different pulse sequences of human brain. First, a two-dimensional reference image is determined to represent the intensity characteristics of the original three-dimensional data. Then a region of interest of the reference image is determined where brain tissues are present. The non-supervised fuzzy c-means clustering is employed to determine: the threshold for obtaining head mask, the low threshold for T2-weighted and PD-weighted images, and the high threshold for T1-weighted, SPGR and FLAIR images. Supervised range-constrained thresholding is employed to determine the low threshold for T1-weighted, SPGR and FLAIR images. Thresholding based on pairs of boundary pixels is proposed to determine the high threshold for T2-and PD-weighted images. Quantification against public data sets with various noise and inhomogeneity levels shows that the proposed methods can yield segmentation robust to noise and intensity inhomogeneity. Qualitatively the proposed methods work well with real clinical data.展开更多
脑卒中是全球主要的致残原因之一,可导致患者在运动、感觉及认知功能上出现障碍。传统的康复治疗周期长、见效慢,而近年来脑机接口、健侧第七颈神经移位术、脑刺激和细胞治疗等技术在卒中患者群体中的应用旨在增强脑可塑性、缓解症状,...脑卒中是全球主要的致残原因之一,可导致患者在运动、感觉及认知功能上出现障碍。传统的康复治疗周期长、见效慢,而近年来脑机接口、健侧第七颈神经移位术、脑刺激和细胞治疗等技术在卒中患者群体中的应用旨在增强脑可塑性、缓解症状,为临床提供了新的治疗思路。功能磁共振成像(functional magnetic resonance imaging,fMRI)作为脑科学重要的研究工具之一,已经广泛应用于脑卒中康复的研究中,它不仅能描述功能和网络连接变化,还能预测康复预后、指导治疗方案和监测康复效果,为脑卒中康复治疗提供了理论依据。本综述总结了近年来国内外应用fMRI技术在脑卒中康复期脑网络重塑等方面的探索,分析了相关研究成果以及存在的难点,以期为脑卒中康复治疗的fMRI研究提供新的思路。展开更多
Magnetic nanoparticles (Fe304) were prepared by chemical precipitation method using Fe^2+ and Fe^3+ salts with sodium hydroxide in the nitrogen atmosphere. Fe3O4 nanoparticles were coated with human serum albumin...Magnetic nanoparticles (Fe304) were prepared by chemical precipitation method using Fe^2+ and Fe^3+ salts with sodium hydroxide in the nitrogen atmosphere. Fe3O4 nanoparticles were coated with human serum albumin(HSA) for magnetic resonance imaging as contrast agent. Characteristics of magnetic particles coated or uncoated were carried out using scanning electron microscopy and X-ray diffraction. Zeta potentials, package effects and distributions of colloid particles were measured to confirm the attachment of HSA on magnetic particles. Effects of Fe3O4 nanoparticles coated with HSA on magnetic resonance imaging were investigated with rats. The experimental results show that the adsorption of HSA on magnetic particles is very favorable to dispersing of magnetic Fe3O4 particles, while the sizes of Fe3O4 particles coated are related to the molar ratio of Fe3O4 to HSA. The diameters of the majority of particles coated are less than 100 nm. Fe3O4 nanoparticle coated with HSA has a good biocompatibility and low toxicity. This new contrast agent has some effects on the nuclear magnetic resonance imaging of liver and the lowest dosage is 20μmol/kg for the demands of diagnosis.展开更多
目的探讨老年高血压群体脑小血管病(cerebral small vessel disease,CSVD)MRI总负荷与认知功能障碍的相关性。方法纳入2018年1月至2024年9月于河北医科大学附属邢台市人民医院就诊的老年高血压患者,依据头颅MRI计算总负荷得分分为轻中度...目的探讨老年高血压群体脑小血管病(cerebral small vessel disease,CSVD)MRI总负荷与认知功能障碍的相关性。方法纳入2018年1月至2024年9月于河北医科大学附属邢台市人民医院就诊的老年高血压患者,依据头颅MRI计算总负荷得分分为轻中度组(0~2分)和重度组(3~4分),比较两组一般资料和认知功能,分析MRI总负荷的危险因素及其与认知功能障碍的相关性。结果重度组收缩压[178(155,180)mmHg vs.159.50(147.75,170)mmHg,P<0.05]、空腹血糖值[5.70(5.37,5.92)mmHg vs.5.38(4.83,5.70)mmHg,P<0.05]和认知功能障碍比例[8(28.1%)vs.3(6.8%),P<0.05]高于轻中度组;多因素logistic回归分析显示收缩压(OR=1.033,95%CI:1.001~1.067,P<0.05)是MRI总负荷的独立危险因素。Spearman相关分析显示MRI总负荷与MMSE得分(r=-0.315,P=0.011)、MoCA总分(r=-0.662,P<0.001)呈负相关。相比于轻中度组,重度组在MMSE量表的定向力、注意力和计算力、语言能力领域和在MoCA量表的视空间及执行能力、注意、语言、延迟回忆及定向领域表现差(P<0.05)。结论收缩压是老年高血压群体MRI总负荷的独立危险因素。MRI总负荷越重,认知功能障碍越重,可能在定向力、视空间及执行能力、注意力和计算力、语言、延迟回忆力表现较差。展开更多
文摘In this paper, methods are proposed and validated to determine low and high thresholds to segment out gray matter and white matter for MR images of different pulse sequences of human brain. First, a two-dimensional reference image is determined to represent the intensity characteristics of the original three-dimensional data. Then a region of interest of the reference image is determined where brain tissues are present. The non-supervised fuzzy c-means clustering is employed to determine: the threshold for obtaining head mask, the low threshold for T2-weighted and PD-weighted images, and the high threshold for T1-weighted, SPGR and FLAIR images. Supervised range-constrained thresholding is employed to determine the low threshold for T1-weighted, SPGR and FLAIR images. Thresholding based on pairs of boundary pixels is proposed to determine the high threshold for T2-and PD-weighted images. Quantification against public data sets with various noise and inhomogeneity levels shows that the proposed methods can yield segmentation robust to noise and intensity inhomogeneity. Qualitatively the proposed methods work well with real clinical data.
文摘脑卒中是全球主要的致残原因之一,可导致患者在运动、感觉及认知功能上出现障碍。传统的康复治疗周期长、见效慢,而近年来脑机接口、健侧第七颈神经移位术、脑刺激和细胞治疗等技术在卒中患者群体中的应用旨在增强脑可塑性、缓解症状,为临床提供了新的治疗思路。功能磁共振成像(functional magnetic resonance imaging,fMRI)作为脑科学重要的研究工具之一,已经广泛应用于脑卒中康复的研究中,它不仅能描述功能和网络连接变化,还能预测康复预后、指导治疗方案和监测康复效果,为脑卒中康复治疗提供了理论依据。本综述总结了近年来国内外应用fMRI技术在脑卒中康复期脑网络重塑等方面的探索,分析了相关研究成果以及存在的难点,以期为脑卒中康复治疗的fMRI研究提供新的思路。
文摘Magnetic nanoparticles (Fe304) were prepared by chemical precipitation method using Fe^2+ and Fe^3+ salts with sodium hydroxide in the nitrogen atmosphere. Fe3O4 nanoparticles were coated with human serum albumin(HSA) for magnetic resonance imaging as contrast agent. Characteristics of magnetic particles coated or uncoated were carried out using scanning electron microscopy and X-ray diffraction. Zeta potentials, package effects and distributions of colloid particles were measured to confirm the attachment of HSA on magnetic particles. Effects of Fe3O4 nanoparticles coated with HSA on magnetic resonance imaging were investigated with rats. The experimental results show that the adsorption of HSA on magnetic particles is very favorable to dispersing of magnetic Fe3O4 particles, while the sizes of Fe3O4 particles coated are related to the molar ratio of Fe3O4 to HSA. The diameters of the majority of particles coated are less than 100 nm. Fe3O4 nanoparticle coated with HSA has a good biocompatibility and low toxicity. This new contrast agent has some effects on the nuclear magnetic resonance imaging of liver and the lowest dosage is 20μmol/kg for the demands of diagnosis.