A novel near-infrared all-fiber mode monitor based on a mini-two-path Mach-Zehnder interferometer(MTP-MZI)is proposed.The MTP-MZI mode monitor is created by fusing a section of(no-core fiber,NCF)and a(single-mode fibe...A novel near-infrared all-fiber mode monitor based on a mini-two-path Mach-Zehnder interferometer(MTP-MZI)is proposed.The MTP-MZI mode monitor is created by fusing a section of(no-core fiber,NCF)and a(single-mode fiber,SMF)together with an optical fiber fusion splicer,establishing two distinct centimeter-level optical transmission paths.Since the high-order modes in NCF transmit near-infrared light more sensitively to curvature-induced energy leakage than the fundamental mode in SMF,the near-infrared high-order mode light leaks out of NCF when the curvature changes,causing the MTP-MZI transmission spectrum to change.By ana⁃lyzing the relationship between the curvature,transmission spectrum,and spatial frequency spectrum,the modes involved in the interference can be studied,thereby revealing the mode transmission characteristics of near-infra⁃red light in optical fibers.In the verification experiments,higher-order modes were excited by inserting a novel hollow-core fiber(HCF)into the MTP-MZI.When the curvature of the MTP-MZI changes,the near-infrared light high-order mode introduced into the device leaks out,causing the transmission spectrum to return to its origi⁃nal state before bending and before the HCF was spliced.The experimental results demonstrate that the MTP-MZI mode monitor can monitor the fiber modes introduced from the external environment,providing both theoretical and experimental foundations for near-infrared all-fiber mode monitoring in optical information systems.展开更多
针对传统电缆舞动检测器在面对电磁干扰和持续供电时灵敏度低、信噪比差、安装复杂和需额外供电等问题,提出一种新型双端Mach-Zehnder(M-Z)电缆扰动监测系统.该系统采用双端光纤M-Z光路结构,可实现长距离、大尺度、多维度的在线监测和...针对传统电缆舞动检测器在面对电磁干扰和持续供电时灵敏度低、信噪比差、安装复杂和需额外供电等问题,提出一种新型双端Mach-Zehnder(M-Z)电缆扰动监测系统.该系统采用双端光纤M-Z光路结构,可实现长距离、大尺度、多维度的在线监测和结构安全预警,从而实时定位舞动位置.该系统的检波器力学单元采用硅胶弹性体和黄铜质量块推挽式结构,经ANSYS软件进行参数化建模和有限元分析后,得出其固有频率为106.77 Hz,与实验所测数据的相对误差仅为1.65%.实验结果表明,该检测器在0~140 Hz内的相对灵敏度为41.25~66.78 dB (rad/Pa),对舞动信号具有较高灵敏度的检测能力.展开更多
In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation betw...In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.展开更多
基金Supported by the Central Government Guidance on Local Science and Technology Development Funds(2023ZY1023)the Six Talent Peaks Project in Jiangsu Province(KTHY-052).
文摘A novel near-infrared all-fiber mode monitor based on a mini-two-path Mach-Zehnder interferometer(MTP-MZI)is proposed.The MTP-MZI mode monitor is created by fusing a section of(no-core fiber,NCF)and a(single-mode fiber,SMF)together with an optical fiber fusion splicer,establishing two distinct centimeter-level optical transmission paths.Since the high-order modes in NCF transmit near-infrared light more sensitively to curvature-induced energy leakage than the fundamental mode in SMF,the near-infrared high-order mode light leaks out of NCF when the curvature changes,causing the MTP-MZI transmission spectrum to change.By ana⁃lyzing the relationship between the curvature,transmission spectrum,and spatial frequency spectrum,the modes involved in the interference can be studied,thereby revealing the mode transmission characteristics of near-infra⁃red light in optical fibers.In the verification experiments,higher-order modes were excited by inserting a novel hollow-core fiber(HCF)into the MTP-MZI.When the curvature of the MTP-MZI changes,the near-infrared light high-order mode introduced into the device leaks out,causing the transmission spectrum to return to its origi⁃nal state before bending and before the HCF was spliced.The experimental results demonstrate that the MTP-MZI mode monitor can monitor the fiber modes introduced from the external environment,providing both theoretical and experimental foundations for near-infrared all-fiber mode monitoring in optical information systems.
文摘针对传统电缆舞动检测器在面对电磁干扰和持续供电时灵敏度低、信噪比差、安装复杂和需额外供电等问题,提出一种新型双端Mach-Zehnder(M-Z)电缆扰动监测系统.该系统采用双端光纤M-Z光路结构,可实现长距离、大尺度、多维度的在线监测和结构安全预警,从而实时定位舞动位置.该系统的检波器力学单元采用硅胶弹性体和黄铜质量块推挽式结构,经ANSYS软件进行参数化建模和有限元分析后,得出其固有频率为106.77 Hz,与实验所测数据的相对误差仅为1.65%.实验结果表明,该检测器在0~140 Hz内的相对灵敏度为41.25~66.78 dB (rad/Pa),对舞动信号具有较高灵敏度的检测能力.
文摘In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.