期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Immunoregulatory polysaccharides from Apocynum venetum L.flowers stimulate phagocytosis and cytokine expression via activating the NF-κB/MAPK signaling pathways in RAW264.7 cells 被引量:7
1
作者 Honglin Wang Changyang Ma +3 位作者 Dongxiao Sun-Waterhouse Jinmei Wang Geoffrey Ivan Neil Waterhouse Wenyi Kang 《Food Science and Human Wellness》 SCIE 2022年第4期806-814,共9页
Two immunomodulatory polysaccharides(Vp2a-Ⅱ and Vp3) were isolated and identified from Apocynum venetum L. flowers, and their innate immune-stimulating functions and working mechanisms were evaluated in RAW264.7 cell... Two immunomodulatory polysaccharides(Vp2a-Ⅱ and Vp3) were isolated and identified from Apocynum venetum L. flowers, and their innate immune-stimulating functions and working mechanisms were evaluated in RAW264.7 cells. Both the level of released nitric oxide(NO) and expression of inducible nitric oxide synthase(iNOS) m RNA were significantly enhanced in the RAW264.7 macrophages cells treated by Vp2a-Ⅱ and Vp3. Vp2a-Ⅱ(100–800 μg/m L) and Vp3(400 μg/mL) could significantly increase the phagocytic activity of RAW264.7 cells and the secretion and m RNA expression of TNF-α and IL-6 in a concentrationdependent manner through affecting mitogen-activated protein kinase(MAPK) activity and nuclear factor κB(NF-κB) nuclear translocation. Vp2a-Ⅱ might activate the MAPK signaling pathways and induce the nuclear translocation of NF-κB p65, whilst Vp3 likely activated the NF-κB and MAPK signaling pathways without influencing the p38 MAPK route. 展开更多
关键词 Apocynum venetum L.flowers Immunomodulatory polysaccharide RAW264.7 cells NF-κB signaling pathway mapk signaling pathway
在线阅读 下载PDF
Betulinic acid protects against ovarian impairment by decreasing F-2 toxin-induced oxidative stress and inflammation associated with the downregulation of p38 expression in mice
2
作者 Li Kong Xinyu Gao +9 位作者 Lijuan Zhu Xing Lin You Huang Chunlin Huang Wenjiang Yang Yazhi Chen Haoqiang Zhao Jing Wu Zhihang Yuan Jin’e Yi 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1292-1302,共11页
F-2 toxin is an estrogenic mycotoxin that causes reproductive disorders in animals.Betulinic acid(BA)is a natural pentacyclic lupane-structure triterpenoid that has diverse pharmacological activities.In this study,the... F-2 toxin is an estrogenic mycotoxin that causes reproductive disorders in animals.Betulinic acid(BA)is a natural pentacyclic lupane-structure triterpenoid that has diverse pharmacological activities.In this study,the antioxidative and anti-inflammatory effects of BA and its underlying mechanism are explored in F-2 toxin-triggered mouse ovarian damage.We found that BA alleviated the F-2 toxin-induced ovarian impairment by stimulating follicle growth,reducing inflammatory cell infiltration,repairing damaged mitochondria and endoplasmic reticulum.Simultaneously,BA not only reversed F-2 toxin-induced reduction of follicle stimulating hormone(FSH)and luteinizing hormone(LH)levels in the serum,but also restrained the protein expression of the estrogen receptors a(ERa)and ERβ.Moreover,BA restored the balance of F-2 toxin-induced ovarian redox system disorders.Subsequently,we found that 0.25 mg/kg BA played an anti-inflammatory role in the F-2 toxin-induced ovarian impairment by decreasing interleukin-1β(IL-1β).IL-6,and tumor necrosis factor-α(TNF-α)mRNA expression,as well as inhibiting p38 protein expression.These data demonstrated that BA exerts its protective effect on F-2 toxin-induced ovarian oxidative impairment and inflammation by inhibiting p38 expression,which implies a natural product-based medicine to ameliorate F-2 toxin-caused female reproductive toxicity and provides a detoxifying method for food contaminated by mycotoxin. 展开更多
关键词 Betulinic acid F-2 toxin Ovarian damage p38 mapk signaling pathway
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部