Both D-stability and finite L2-gain properties are studiedfor a class of uncertain discrete-time systems with timevaryingnetwork-induced delays. By using coordinate transformand delay partition, the D-stability and H...Both D-stability and finite L2-gain properties are studiedfor a class of uncertain discrete-time systems with timevaryingnetwork-induced delays. By using coordinate transformand delay partition, the D-stability and H∞ performance problemsfor such networked control systems (NCSs) are equivalentlytransferred into the corresponding problems for switching systemswith arbitrary switching. Then, a sufficient condition for the existenceof the robust D-stabilizing controllers is derived in termsof linear matrix inequality (LMI), and the design method is alsopresented for the state feedback controllers which guarantee thatall the closed-loop poles remain inside the specified disk D(α,r)and the desired disturbance attenuation level. Finally, an illustrativeexample is given to demonstrate the effectiveness of the proposedresults.展开更多
This paper investigates a signal difference-based dead- band H∞ control approach for networked control systems (NCSs) with limited resources. The effects of variable network-induced de- lays, sampling intervals and...This paper investigates a signal difference-based dead- band H∞ control approach for networked control systems (NCSs) with limited resources. The effects of variable network-induced de- lays, sampling intervals and data transmitting deadbands are con- sidered simultaneously and the model of the NCS is presented. A Lyapunov functional is adopted, which makes full use of the network characteristic information including the bounds of net- work delay (BND), the bounds of sampling interval (BSI) and the bounds of transmission deadband (BTD). In the meanwhile, the new H∞ performance analysis and controller design conditions for the NCSs are proposed, which describe the relationship of BND, BSI, BTD and the system's performance. Three examples are used to illustrate the advantages of the proposed methods. The results have shown that the proposed method not only effectively reduces the data traffic, but also guarantees the system asymptotically sta- ble and achieves the prescribed H∞ disturbance attenuation level.展开更多
A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures an...A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures and actuators failures was analyzed using hybrid systems technique based on the robust fault-tolerant control theory. The parametric expression of controller is given based on the feasible solution of linear matrix inequality. The simulation results are provided on the basis of detailed theoretical analysis, which further demonstrate the validity of the proposed schema.展开更多
Implementing a control system over a communication network induces inevitable time delays that may degrade performance and even cause instability. One of the most effective ways to reduce the negative effect of delays...Implementing a control system over a communication network induces inevitable time delays that may degrade performance and even cause instability. One of the most effective ways to reduce the negative effect of delays on the performance of networked control system (NCS) is to reduce network traffic. In this paper, adjustable deadbands are explored as a solution to reduce network traffic in NCS. A method of fault-tolerant control of networked control system is presented, which takes into account system response as well as network traffic. The integrity design for a kind of NCS with sensor failures and actuator failures is analyzed based on robust fault-tolerant control theory and information scheduling. After detailed theoretical analysis, the paper also provides the simulation results, which further validate the proposed scheme.展开更多
This paper addresses the problem of fault detection(FD) for networked systems with access constraints and packet dropouts.Two independent Markov chains are used to describe the sequences of channels which are availa...This paper addresses the problem of fault detection(FD) for networked systems with access constraints and packet dropouts.Two independent Markov chains are used to describe the sequences of channels which are available for communication at an instant and the packet dropout process,respectively.Performance indexes H∞ and H_ are introduced to describe the robustness of residual against external disturbances and sensitivity of residual to faults,respectively.By using a mode-dependent fault detection filter(FDF) as residual generator,the addressed FD problem is converted into an auxiliary filter design problem with the above index constraints.A sufficient condition for the existence of the FDF is derived in terms of certain linear matrix inequalities(LMIs).When these LMIs are feasible,the explicit expression of the desired FDF can also be characterized.A numerical example is exploited to show the usefulness of the proposed results.展开更多
The fault detection problem for the nonlinear networked control system (NCS) with packet dropout and delay is investigated. A nonlinear stochastic system model is proposed to account for the NCS with random packet d...The fault detection problem for the nonlinear networked control system (NCS) with packet dropout and delay is investigated. A nonlinear stochastic system model is proposed to account for the NCS with random packet dropout and network- induced non-uniformly distributed time-varying delay in both from sensor to controller (S/C) and from controller to actuator (C/A). Based on the obtained NCS model, employing an observer-based fault detection filter as the residual generator, the addressed fault detection problem is converted into an auxiliary nonlinear H∞ control problem. Then, with the help of Lyapunov functional approach, a sufficient condition for the desired fault detection filter is constructed in terms of certain linear matrix inequalities, which depend on not only the delay interval but also the delay interval occurrence rate and successful packet communication rate. Especially, a trade-off phenomenon between the maximum allowable delay bound and successful data packet transmission rate is found, which is typically resulted from the limited bandwidth of communication networks. The effectiveness of the proposed method is demonstrated by a simulation example.展开更多
Based on the T-S fuzzy model,this paper presents a new model of non-linear network control system with stochastic transfer delay.Sufficient criterion is proposed to guarantee globally asymptotically stability of this ...Based on the T-S fuzzy model,this paper presents a new model of non-linear network control system with stochastic transfer delay.Sufficient criterion is proposed to guarantee globally asymptotically stability of this two-levels T-S fuzzy model.Also a T-S fuzzy observer of NCS is designed base on this two-levels T-S fuzzy model.All these results present a new approach for networked control system analysis and design.展开更多
针对网络控制系统(networked control system,NCS)中随机时延导致系统性能下降的问题,利用粒子群优化(particle swarm optimization,PSO)的最小二乘支持向量机(least square support vector machine,LSSVM)建立NCS中随机时延预测模型,...针对网络控制系统(networked control system,NCS)中随机时延导致系统性能下降的问题,利用粒子群优化(particle swarm optimization,PSO)的最小二乘支持向量机(least square support vector machine,LSSVM)建立NCS中随机时延预测模型,精确预测未来时刻的时延;同时利用该预测算法预测的时延通过快速隐式广义预测控制算法对NCS随机时延进行补偿。仿真结果表明,PSO优化的LS-SVM算法对随机时延具有较高的预测精度,同时快速隐式广义预测控制算法可使系统的输出很好地跟踪参考轨迹,保证系统良好的控制效果。展开更多
基金supported by the National Natural Science Foundation of China(61403344)
文摘Both D-stability and finite L2-gain properties are studiedfor a class of uncertain discrete-time systems with timevaryingnetwork-induced delays. By using coordinate transformand delay partition, the D-stability and H∞ performance problemsfor such networked control systems (NCSs) are equivalentlytransferred into the corresponding problems for switching systemswith arbitrary switching. Then, a sufficient condition for the existenceof the robust D-stabilizing controllers is derived in termsof linear matrix inequality (LMI), and the design method is alsopresented for the state feedback controllers which guarantee thatall the closed-loop poles remain inside the specified disk D(α,r)and the desired disturbance attenuation level. Finally, an illustrativeexample is given to demonstrate the effectiveness of the proposedresults.
基金supported by the National Natural Science Foundation of China(6110410661473195)+1 种基金the Natural Science Foundation of Liaoning Province(201202156)the Program for Liaoning Excellent Talents in University(LJQ2012100)
文摘This paper investigates a signal difference-based dead- band H∞ control approach for networked control systems (NCSs) with limited resources. The effects of variable network-induced de- lays, sampling intervals and data transmitting deadbands are con- sidered simultaneously and the model of the NCS is presented. A Lyapunov functional is adopted, which makes full use of the network characteristic information including the bounds of net- work delay (BND), the bounds of sampling interval (BSI) and the bounds of transmission deadband (BTD). In the meanwhile, the new H∞ performance analysis and controller design conditions for the NCSs are proposed, which describe the relationship of BND, BSI, BTD and the system's performance. Three examples are used to illustrate the advantages of the proposed methods. The results have shown that the proposed method not only effectively reduces the data traffic, but also guarantees the system asymptotically sta- ble and achieves the prescribed H∞ disturbance attenuation level.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2006AA04Z42g), National Natural Science Foundation of China (60574085, 60736026, 60721003), and German Research Foundation (DI 773/10)
基金Supported by National Natural Science Foundation of China (60574085, 60736026, 60721003), the National High Technology Research and Development Program of China (863 Program) (2006AA04Z428), and German Research Foundation (DFG)(DI 773/10)
基金This project was supported by the National Natural Science Foundation of China (60274014)Doctor Foundation of China Education Ministry (20020487006).
文摘A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures and actuators failures was analyzed using hybrid systems technique based on the robust fault-tolerant control theory. The parametric expression of controller is given based on the feasible solution of linear matrix inequality. The simulation results are provided on the basis of detailed theoretical analysis, which further demonstrate the validity of the proposed schema.
基金Supported by National Natural Science Foundation of P. R. China (60274014)the Specialized Research Fund for Doctoral Program of Higher Education of P. R. China (20020487006)
文摘Implementing a control system over a communication network induces inevitable time delays that may degrade performance and even cause instability. One of the most effective ways to reduce the negative effect of delays on the performance of networked control system (NCS) is to reduce network traffic. In this paper, adjustable deadbands are explored as a solution to reduce network traffic in NCS. A method of fault-tolerant control of networked control system is presented, which takes into account system response as well as network traffic. The integrity design for a kind of NCS with sensor failures and actuator failures is analyzed based on robust fault-tolerant control theory and information scheduling. After detailed theoretical analysis, the paper also provides the simulation results, which further validate the proposed scheme.
基金supported by the National Natural Science Foundation of China (6057408860874053)
文摘This paper addresses the problem of fault detection(FD) for networked systems with access constraints and packet dropouts.Two independent Markov chains are used to describe the sequences of channels which are available for communication at an instant and the packet dropout process,respectively.Performance indexes H∞ and H_ are introduced to describe the robustness of residual against external disturbances and sensitivity of residual to faults,respectively.By using a mode-dependent fault detection filter(FDF) as residual generator,the addressed FD problem is converted into an auxiliary filter design problem with the above index constraints.A sufficient condition for the existence of the FDF is derived in terms of certain linear matrix inequalities(LMIs).When these LMIs are feasible,the explicit expression of the desired FDF can also be characterized.A numerical example is exploited to show the usefulness of the proposed results.
基金supported by the National Natural Science Foundation of China (60874053 60574088)
文摘The fault detection problem for the nonlinear networked control system (NCS) with packet dropout and delay is investigated. A nonlinear stochastic system model is proposed to account for the NCS with random packet dropout and network- induced non-uniformly distributed time-varying delay in both from sensor to controller (S/C) and from controller to actuator (C/A). Based on the obtained NCS model, employing an observer-based fault detection filter as the residual generator, the addressed fault detection problem is converted into an auxiliary nonlinear H∞ control problem. Then, with the help of Lyapunov functional approach, a sufficient condition for the desired fault detection filter is constructed in terms of certain linear matrix inequalities, which depend on not only the delay interval but also the delay interval occurrence rate and successful packet communication rate. Especially, a trade-off phenomenon between the maximum allowable delay bound and successful data packet transmission rate is found, which is typically resulted from the limited bandwidth of communication networks. The effectiveness of the proposed method is demonstrated by a simulation example.
基金National Natural Science Foundation of china(60274014,60574088)
文摘Based on the T-S fuzzy model,this paper presents a new model of non-linear network control system with stochastic transfer delay.Sufficient criterion is proposed to guarantee globally asymptotically stability of this two-levels T-S fuzzy model.Also a T-S fuzzy observer of NCS is designed base on this two-levels T-S fuzzy model.All these results present a new approach for networked control system analysis and design.
文摘针对网络控制系统(networked control system,NCS)中随机时延导致系统性能下降的问题,利用粒子群优化(particle swarm optimization,PSO)的最小二乘支持向量机(least square support vector machine,LSSVM)建立NCS中随机时延预测模型,精确预测未来时刻的时延;同时利用该预测算法预测的时延通过快速隐式广义预测控制算法对NCS随机时延进行补偿。仿真结果表明,PSO优化的LS-SVM算法对随机时延具有较高的预测精度,同时快速隐式广义预测控制算法可使系统的输出很好地跟踪参考轨迹,保证系统良好的控制效果。