针对无线和电力线通信混合组网的信道竞争接入问题,提出了一种基于深度强化学习的电力线与无线双模通信的MAC接入算法。双模节点根据网络广播信息和信道使用等数据自适应接入双媒质信道。首先建立了基于双模通信网络交互和统计信息的双...针对无线和电力线通信混合组网的信道竞争接入问题,提出了一种基于深度强化学习的电力线与无线双模通信的MAC接入算法。双模节点根据网络广播信息和信道使用等数据自适应接入双媒质信道。首先建立了基于双模通信网络交互和统计信息的双模通信节点数据采集模型;接着定义了基于协作信息的深度强化学习(deep reinforcement learning,DRL)状态空间、动作空间和奖励,设计了联合α-公平效用函数和P坚持接入机制的节点决策流程,实现基于双深度Q网络(double deep Q-network,DDQN)的双模节点自适应接入算法;最后进行算法性能仿真和对比分析。仿真结果表明,提出的接入算法能够在保证双模网络和信道接入公平性的条件下,有效提高双模通信节点的接入性能。展开更多
低功耗广域网(Low Power Wide Area Network,LPWAN)技术的出现,能够在保证更远距离的通信传输的同时,最大限度地降低功耗,节约传输成本。LoRa(Long Range)技术作为其中的佼佼者,凭借其远距离、低功耗、大容量、强抗干扰、高接收灵敏度...低功耗广域网(Low Power Wide Area Network,LPWAN)技术的出现,能够在保证更远距离的通信传输的同时,最大限度地降低功耗,节约传输成本。LoRa(Long Range)技术作为其中的佼佼者,凭借其远距离、低功耗、大容量、强抗干扰、高接收灵敏度的特点,备受工业界和学术界的青睐。针对目前工业中主流使用的基于ALOHA的LoRaWAN协议无法很好地解决海量终端设备接入LoRa网络后所带来的严重数据包冲突以及LoRa CAD(Channel Activity Detection)功能带来的隐藏终端问题,提出了一种基于BTMA(Busy Tone Multiple Access)的LoRa网络MAC协议——BT-MAC协议。该协议利用了LoRa高接收灵敏度的特性,网关利用“忙音”信标来通知各个节点网关的工作情况,减少了无效包的发送。同时,节点端通过记录有“忙音”信息和本地信息的逻辑信道矩阵,结合最优信道选择算法,选出最优逻辑信道进行发送,降低了端节点上行数据包之间的冲突,有效缓解了LoRa网络中的隐藏终端问题以及阻塞问题。此外,搭建了LoRa网络MAC协议测试平台,并测试了BT-MAC的有效性,完成了室内和室外环境大规模的并发实验和能耗检测实验。实验结果表明,BT-MAC协议的吞吐量是LMAC-2协议的1.6倍,是ALOHA协议的5.1倍;同时其包接收率达到LMAC-2协议的1.53倍,ALOHA协议的17.2倍;其包接收平均能耗约为LMAC-2协议的64.1%,为ALOHA协议的14.2%。展开更多
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t...In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching.展开更多
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base...In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.展开更多
Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To sa...Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To satisfy quality of service(QoS)requirements of various users,it is critical to research efficient routing strategies to fully utilize satellite resources.This paper proposes a multi-QoS information optimized routing algorithm based on reinforcement learning for LEO satellite networks,which guarantees high level assurance demand services to be prioritized under limited satellite resources while considering the load balancing performance of the satellite networks for low level assurance demand services to ensure the full and effective utilization of satellite resources.An auxiliary path search algorithm is proposed to accelerate the convergence of satellite routing algorithm.Simulation results show that the generated routing strategy can timely process and fully meet the QoS demands of high assurance services while effectively improving the load balancing performance of the link.展开更多
In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of t...In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.展开更多
An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and sa...An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and samples from the model to obtain the next generation,avoiding the problem of building-blocks destruction caused by crossover and mutation.Neighboring search from artificial bee colony algorithm(ABCA)is introduced to enhance the local optimization ability and improved to raise the speed of convergence.The probability model is modified by boundary correction and loss correction to enhance the robustness of the algorithm.The proposed IEDA is compared with other intelligent algorithms in relevant references.The results show that the proposed IEDA has faster convergence speed and stronger optimization ability,proving the feasibility and effectiveness of the algorithm.展开更多
The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to...The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to falling into local optima.To address these issues,an improved GA with domain knowledge(IGADK)is proposed.Firstly,domain knowledge is incorporated into the learning process of causality to construct a new fitness function.Secondly,a dynamical mutation operator is introduced in the algorithm to accelerate the convergence rate.Finally,an experiment is conducted on simulation data,which compares the classical GA with IGADK with domain knowledge of varying accuracy.The IGADK can greatly reduce the number of iterations,populations,and samples required for learning,which illustrates the efficiency and effectiveness of the proposed algorithm.展开更多
To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO al...To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO algorithm utilizes a semi-rasterization environment modeling technique and inte-grates the geometric gradient law of ASMs which distinguishes itself from other collaborative path planning algorithms by fully considering the coupling between collaborative paths. Then, MRC-PSO algorithm conducts chunked stepwise recursive evo-lution of particles while incorporating circumvent, coordination, and smoothing operators which facilitates local selection opti-mization of paths, gradually reducing algorithmic space, accele-rating convergence, and enhances path cooperativity. Simula-tion experiments comparing the MRC-PSO algorithm with the PSO algorithm, genetic algorithm and operational area cluster real-time restriction (OACRR)-PSO algorithm, which demon-strate that the MRC-PSO algorithm has a faster convergence speed, and the average number of iterations is reduced by approximately 75%. It also proves that it is equally effective in resolving complex scenarios involving multiple obstacles. More-over it effectively addresses the problem of path crossing and can better satisfy the requirements of multi-platform collabora-tive path planning. The experiments are conducted in three col-laborative operation modes, namely, three-to-two, three-to-three, and four-to-two, and the outcomes demonstrate that the algorithm possesses strong universality.展开更多
针对现有分级多PAN太赫兹无线网络MAC(Medium Access Control)协议中存在的子网形成方案不合理以及私有CTA(Channel Time Allocation)与子网内实际负载不匹配等问题,提出了一种高效低时延的MAC层优化协议.该协议采用基于泛听的按需形成...针对现有分级多PAN太赫兹无线网络MAC(Medium Access Control)协议中存在的子网形成方案不合理以及私有CTA(Channel Time Allocation)与子网内实际负载不匹配等问题,提出了一种高效低时延的MAC层优化协议.该协议采用基于泛听的按需形成子网机制避免了子网分布不均匀以及因子网形成后没有节点加入而造成的私有CTA资源浪费的问题.在子网形成后,子微微网协调器(Piconet Coordinator,PNC)根据子网内实际负载情况自适应选择私有CTA时隙资源优化机制,让有数据传输需求的节点及时将数据发出.仿真结果表明,所提出的方案能有效地降低数据帧平均接入时延,提高吞吐量以及数据帧的传输成功率.展开更多
Focusing on the single machine scheduling problem which minimizes the total completion time in the presence of dynamic job arrivals, a rolling optimization scheduling algorithm is proposed based on the analysis of the...Focusing on the single machine scheduling problem which minimizes the total completion time in the presence of dynamic job arrivals, a rolling optimization scheduling algorithm is proposed based on the analysis of the character and structure of scheduling. An optimal scheduling strategy in collision window is presented. Performance evaluation of this algorithm is given. Simulation indicates that the proposed algorithm is better than other common heuristic algorithms on both the total performance and stability.展开更多
Identical parallel machine scheduling problem for minimizing the makespan is a very important production scheduling problem. When its scale is large, many difficulties will arise in the course of solving identical par...Identical parallel machine scheduling problem for minimizing the makespan is a very important production scheduling problem. When its scale is large, many difficulties will arise in the course of solving identical parallel machine scheduling problem. Ant system based optimization algorithm (ASBOA) has shown great advantages in solving the combinatorial optimization problem in view of its characteristics of high efficiency and suitability for practical applications. An ASBOA for minimizing the makespan in identical machine scheduling problem is presented. Two different scale numerical examples demonstrate that the ASBOA proposed is efficient and fit for large-scale identical parallel machine scheduling problem for minimizing the makespan, the quality of its solution has advantages over heuristic procedure and simulated annealing method, as well as genetic algorithm.展开更多
Cloud data centers consume a multitude of power leading to the problem of high energy consumption. In order to solve this problem, an energy-efficient virtual machine(VM) consolidation algorithm named PVDE(prediction-...Cloud data centers consume a multitude of power leading to the problem of high energy consumption. In order to solve this problem, an energy-efficient virtual machine(VM) consolidation algorithm named PVDE(prediction-based VM deployment algorithm for energy efficiency) is presented. The proposed algorithm uses linear weighted method to predict the load of a host and classifies the hosts in the data center, based on the predicted host load, into four classes for the purpose of VMs migration. We also propose four types of VM selection algorithms for the purpose of determining potential VMs to be migrated. We performed extensive performance analysis of the proposed algorithms. Experimental results show that, in contrast to other energy-saving algorithms, the algorithm proposed in this work significantly reduces the energy consumption and maintains low service level agreement(SLA) violations.展开更多
In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong cou...In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong coupling and large time-delay,in terms of the fuzzy character of this real complex system,a fuzzy least squares support vector machine(FLS-SVM) soft measurement model was established and its parameters were optimized by using adaptive mutative scale chaos immune algorithm.The simulation results reveal that fuzzy least squares support vector machines soft measurement model is of better approximation accuracy and robustness.And application results show that the relative errors of the soft measurement model are less than 3.34%.展开更多
文摘针对无线和电力线通信混合组网的信道竞争接入问题,提出了一种基于深度强化学习的电力线与无线双模通信的MAC接入算法。双模节点根据网络广播信息和信道使用等数据自适应接入双媒质信道。首先建立了基于双模通信网络交互和统计信息的双模通信节点数据采集模型;接着定义了基于协作信息的深度强化学习(deep reinforcement learning,DRL)状态空间、动作空间和奖励,设计了联合α-公平效用函数和P坚持接入机制的节点决策流程,实现基于双深度Q网络(double deep Q-network,DDQN)的双模节点自适应接入算法;最后进行算法性能仿真和对比分析。仿真结果表明,提出的接入算法能够在保证双模网络和信道接入公平性的条件下,有效提高双模通信节点的接入性能。
文摘低功耗广域网(Low Power Wide Area Network,LPWAN)技术的出现,能够在保证更远距离的通信传输的同时,最大限度地降低功耗,节约传输成本。LoRa(Long Range)技术作为其中的佼佼者,凭借其远距离、低功耗、大容量、强抗干扰、高接收灵敏度的特点,备受工业界和学术界的青睐。针对目前工业中主流使用的基于ALOHA的LoRaWAN协议无法很好地解决海量终端设备接入LoRa网络后所带来的严重数据包冲突以及LoRa CAD(Channel Activity Detection)功能带来的隐藏终端问题,提出了一种基于BTMA(Busy Tone Multiple Access)的LoRa网络MAC协议——BT-MAC协议。该协议利用了LoRa高接收灵敏度的特性,网关利用“忙音”信标来通知各个节点网关的工作情况,减少了无效包的发送。同时,节点端通过记录有“忙音”信息和本地信息的逻辑信道矩阵,结合最优信道选择算法,选出最优逻辑信道进行发送,降低了端节点上行数据包之间的冲突,有效缓解了LoRa网络中的隐藏终端问题以及阻塞问题。此外,搭建了LoRa网络MAC协议测试平台,并测试了BT-MAC的有效性,完成了室内和室外环境大规模的并发实验和能耗检测实验。实验结果表明,BT-MAC协议的吞吐量是LMAC-2协议的1.6倍,是ALOHA协议的5.1倍;同时其包接收率达到LMAC-2协议的1.53倍,ALOHA协议的17.2倍;其包接收平均能耗约为LMAC-2协议的64.1%,为ALOHA协议的14.2%。
基金Supported by the Natural Science Foundation of Chongqing(General Program,NO.CSTB2022NSCQ-MSX0884)Discipline Teaching Special Project of Yangtze Normal University(csxkjx14)。
文摘In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching.
基金Shanxi Province Higher Education Science and Technology Innovation Fund Project(2022-676)Shanxi Soft Science Program Research Fund Project(2016041008-6)。
文摘In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.
基金National Key Research and Development Program(2021YFB2900604)。
文摘Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To satisfy quality of service(QoS)requirements of various users,it is critical to research efficient routing strategies to fully utilize satellite resources.This paper proposes a multi-QoS information optimized routing algorithm based on reinforcement learning for LEO satellite networks,which guarantees high level assurance demand services to be prioritized under limited satellite resources while considering the load balancing performance of the satellite networks for low level assurance demand services to ensure the full and effective utilization of satellite resources.An auxiliary path search algorithm is proposed to accelerate the convergence of satellite routing algorithm.Simulation results show that the generated routing strategy can timely process and fully meet the QoS demands of high assurance services while effectively improving the load balancing performance of the link.
基金National Natural Science Foundation of China(62373187)Forward-looking Layout Special Projects(ILA220591A22)。
文摘In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios.
基金supported by the National Key Research and Development Program(2021YFB3502500).
文摘An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and samples from the model to obtain the next generation,avoiding the problem of building-blocks destruction caused by crossover and mutation.Neighboring search from artificial bee colony algorithm(ABCA)is introduced to enhance the local optimization ability and improved to raise the speed of convergence.The probability model is modified by boundary correction and loss correction to enhance the robustness of the algorithm.The proposed IEDA is compared with other intelligent algorithms in relevant references.The results show that the proposed IEDA has faster convergence speed and stronger optimization ability,proving the feasibility and effectiveness of the algorithm.
基金supported by the National Social Science Fund of China(2022-SKJJ-B-084).
文摘The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to falling into local optima.To address these issues,an improved GA with domain knowledge(IGADK)is proposed.Firstly,domain knowledge is incorporated into the learning process of causality to construct a new fitness function.Secondly,a dynamical mutation operator is introduced in the algorithm to accelerate the convergence rate.Finally,an experiment is conducted on simulation data,which compares the classical GA with IGADK with domain knowledge of varying accuracy.The IGADK can greatly reduce the number of iterations,populations,and samples required for learning,which illustrates the efficiency and effectiveness of the proposed algorithm.
基金supported by Hunan Provincial Natural Science Foundation(2024JJ5173,2023JJ50047)Hunan Provincial Department of Education Scientific Research Project(23A0494)Hunan Provincial Innovation Foundation for Postgraduate(CX20231221).
文摘To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO algorithm utilizes a semi-rasterization environment modeling technique and inte-grates the geometric gradient law of ASMs which distinguishes itself from other collaborative path planning algorithms by fully considering the coupling between collaborative paths. Then, MRC-PSO algorithm conducts chunked stepwise recursive evo-lution of particles while incorporating circumvent, coordination, and smoothing operators which facilitates local selection opti-mization of paths, gradually reducing algorithmic space, accele-rating convergence, and enhances path cooperativity. Simula-tion experiments comparing the MRC-PSO algorithm with the PSO algorithm, genetic algorithm and operational area cluster real-time restriction (OACRR)-PSO algorithm, which demon-strate that the MRC-PSO algorithm has a faster convergence speed, and the average number of iterations is reduced by approximately 75%. It also proves that it is equally effective in resolving complex scenarios involving multiple obstacles. More-over it effectively addresses the problem of path crossing and can better satisfy the requirements of multi-platform collabora-tive path planning. The experiments are conducted in three col-laborative operation modes, namely, three-to-two, three-to-three, and four-to-two, and the outcomes demonstrate that the algorithm possesses strong universality.
文摘Focusing on the single machine scheduling problem which minimizes the total completion time in the presence of dynamic job arrivals, a rolling optimization scheduling algorithm is proposed based on the analysis of the character and structure of scheduling. An optimal scheduling strategy in collision window is presented. Performance evaluation of this algorithm is given. Simulation indicates that the proposed algorithm is better than other common heuristic algorithms on both the total performance and stability.
基金ThisprojectwassupportedbytheNationalNaturalScienceFoundationofChina (No .5 9990 470 - 2 )andDoctoralProgramFoundationunderMinistryofEducation (No .2 0 0 10 4870 2 4)
文摘Identical parallel machine scheduling problem for minimizing the makespan is a very important production scheduling problem. When its scale is large, many difficulties will arise in the course of solving identical parallel machine scheduling problem. Ant system based optimization algorithm (ASBOA) has shown great advantages in solving the combinatorial optimization problem in view of its characteristics of high efficiency and suitability for practical applications. An ASBOA for minimizing the makespan in identical machine scheduling problem is presented. Two different scale numerical examples demonstrate that the ASBOA proposed is efficient and fit for large-scale identical parallel machine scheduling problem for minimizing the makespan, the quality of its solution has advantages over heuristic procedure and simulated annealing method, as well as genetic algorithm.
基金Projects(61572525,61272148)supported by the National Natural Science Foundation of ChinaProject(20120162110061)supported by the PhD Programs Foundation of Ministry of Education of China+1 种基金Project(CX2014B066)supported by the Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2014zzts044)supported by the Fundamental Research Funds for the Central Universities,China
文摘Cloud data centers consume a multitude of power leading to the problem of high energy consumption. In order to solve this problem, an energy-efficient virtual machine(VM) consolidation algorithm named PVDE(prediction-based VM deployment algorithm for energy efficiency) is presented. The proposed algorithm uses linear weighted method to predict the load of a host and classifies the hosts in the data center, based on the predicted host load, into four classes for the purpose of VMs migration. We also propose four types of VM selection algorithms for the purpose of determining potential VMs to be migrated. We performed extensive performance analysis of the proposed algorithms. Experimental results show that, in contrast to other energy-saving algorithms, the algorithm proposed in this work significantly reduces the energy consumption and maintains low service level agreement(SLA) violations.
基金Project(51176045)supported by the National Natural Science Foundation of ChinaProject(2011ZK2032)supported by the Major Soft Science Program of Science and Technology Ministry of Hunan Province,China
文摘In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong coupling and large time-delay,in terms of the fuzzy character of this real complex system,a fuzzy least squares support vector machine(FLS-SVM) soft measurement model was established and its parameters were optimized by using adaptive mutative scale chaos immune algorithm.The simulation results reveal that fuzzy least squares support vector machines soft measurement model is of better approximation accuracy and robustness.And application results show that the relative errors of the soft measurement model are less than 3.34%.