In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the...In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the solution of an algebraic Riccati equation (ARE) and makes the H∞norm of the closedloop transfer function matrix from disturbance inputs to controlled outputs less than a given constant which ensure the stability of the overall controlled system at each iteration. The given example shows that the convergence of the algorithm is satisfactory.展开更多
It is a complicated nonlinear controlling problem to conduct a two-dimensional trajectory correction of rockets.By establishing the aerodynamic correction force mathematical model of rockets on nose cone swinging,the ...It is a complicated nonlinear controlling problem to conduct a two-dimensional trajectory correction of rockets.By establishing the aerodynamic correction force mathematical model of rockets on nose cone swinging,the linear control is realized by the dynamic inverse nonlinear controlling theory and the three-time-scale separation method.The control ability and the simulation results are also tested and verified.The results show that the output responses of system track the expected curve well and the error is controlled in a given margin.The maximum correction is about±314 m in the lengthwise direction and±1 212 m in the crosswise direction from the moment of 5 s to the drop-point time when the angle of fire is 55°.Thus,based on the dynamic inverse control of feedback linearization,the trajectory correction capability of nose cone swinging can satisfy the requirements of two-dimensional ballistic correction,and the validity and effectiveness of the method are proved.展开更多
现代航天器通常携带大量的液体推进剂,在轨运行时推进剂的消耗将导致等效模型参数的改变.为了获取准确的等效模型参数并将其引入GNC(guidance,navigation and control)系统闭环控制,提高航天器的姿态控制精度,文章提出一种基于平方根容...现代航天器通常携带大量的液体推进剂,在轨运行时推进剂的消耗将导致等效模型参数的改变.为了获取准确的等效模型参数并将其引入GNC(guidance,navigation and control)系统闭环控制,提高航天器的姿态控制精度,文章提出一种基于平方根容积卡尔曼滤波(SR-CKF)的等效模型参数在轨辨识策略.首先,为了建立适用于金属膜片贮箱的等效模型,在等效球摆模型的悬挂点施加扭簧-阻尼器以等效金属膜片对推进剂的刚度-阻尼效应,并借助Kane方法建立了航天器刚-液耦合动力学方程.其次,针对状态反馈反步控制器中等效模型参数未知的情形,提出一种基于SR-CKF的等效模型参数在轨辨识策略.该策略可在航天器完成一次大角度姿态机动任务的同时,根据星载角速度计数据在线辨识出等效模型的各项参数以及贮箱内推进剂的剩余量,并预测出推进剂的分布运动状态.最后,数值仿真结果表明了提出的在轨辨识策略的有效性和必要性.文章的工作对于航天器GNC系统中等效模型的校准迭代、研究推进剂在轨晃动行为及预测航天器服役年限具有重要参考价值.展开更多
This paper studies the robust stochastic stabilization and robust H∞ control for linear time-delay systems with both Markovian jump parameters and unknown norm-bounded parameter uncertainties. This problem can be sol...This paper studies the robust stochastic stabilization and robust H∞ control for linear time-delay systems with both Markovian jump parameters and unknown norm-bounded parameter uncertainties. This problem can be solved on the basis of stochastic Lyapunov approach and linear matrix inequality (LMI) technique. Sufficient conditions for the existence of stochastic stabilization and robust H∞ state feedback controller are presented in terms of a set of solutions of coupled LMIs. Finally, a numerical example is included to demonstrate the practicability of the proposed methods.展开更多
In recent years,unmanned aerial vehicles(UAVs)have acquired an increasing interest due to their wide range of applications in military,scientific,and civilian fields.One of the quadcopter limitations is its lack of fu...In recent years,unmanned aerial vehicles(UAVs)have acquired an increasing interest due to their wide range of applications in military,scientific,and civilian fields.One of the quadcopter limitations is its lack of full actuation property which limits its mobility and trajectory tracking capabilities.In this work,an overactuated quadcopter design and control,which allows independent tilting of the rotors around their arm axis,is presented.Quadcopter with this added tilting mechanism makes it possible to overcome the aforementioned mobility limitation by achieving full authority on torque and force vectoring.The tilting property increases the control inputs to 8(the 4 propeller rotation speed plus the 4 rotor tilting angles)which gives a full control on the quadcopter states.Extensive mathematical model for the tilt rotor quadcopter is derived based on the Newton-Euler method.Furthermore,the feedback linearization method is used to linearize the model and a mixed sensitivity H∞optimal controller is then designed and synthesized to achieve the required performance and stability.The controlled system is simulated to assure the validity of the proposed controller and the quadcopter design.The controller is tested for its effectiveness in rejecting disturbances,attenuating sensor noise,and coping with the model uncertainties.Moreover,a complicated trajectory is examined in which the tilt rotor quadcopter has been successfully followed.The test results show the supremacy of the overactuated quadcopter over the traditional one.展开更多
永磁同步电机因其结构紧凑、噪声较少、功耗较少、运行速度快、操作稳定,已被普遍采用。针对永磁同步电机弱磁控制过程中,转速环参数选取采用传统PI(proportional-integral)控制方法,依靠经验整定参数,外界抗干扰能力较差、难以保证在...永磁同步电机因其结构紧凑、噪声较少、功耗较少、运行速度快、操作稳定,已被普遍采用。针对永磁同步电机弱磁控制过程中,转速环参数选取采用传统PI(proportional-integral)控制方法,依靠经验整定参数,外界抗干扰能力较差、难以保证在各运行区间具有优良性能等问题,提出了一种基于减法平均优化算法的永磁同步电机的弱磁和MTPA(maximum torque per ampere)控制的宽运行范围方法。将智能寻优算法、MTPA控制、弱磁控制三者相结合,利用减法平均优化算法优化PI控制器的参数,提高了系统的响应性能和抗干扰能力;工作电压未超过电压极限圆使用MTPA控制策略运行;工作电压超过电压极限圆利用电压闭环反馈,进行弱磁控制。使用MATLAB/Simulink构建的永磁同步电机弱磁控制仿真模拟,通过PI控制器和减法平均优化算法优化后的PI控制器性能对比,从仿真结果得到控制器方法的有效性。实验有效证明了该控制方法能够解决各种运行工况下控制器参数的优化整定问题,提高电机控制精度。展开更多
研究了n比特随机量子系统实时状态估计及其反馈控制的问题.对于连续弱测量(Continuous weak measurement, CWM)过程存在高斯噪声的情况,基于在线交替方向乘子法(Online alternating direction multiplier method,OADM)推导出一种适用于...研究了n比特随机量子系统实时状态估计及其反馈控制的问题.对于连续弱测量(Continuous weak measurement, CWM)过程存在高斯噪声的情况,基于在线交替方向乘子法(Online alternating direction multiplier method,OADM)推导出一种适用于n比特随机量子系统的实时量子状态估计算法,即QSE-OADM (Quantum state estimation based on OADM).运用李雅普诺夫方法设计控制律,实现基于实时量子状态估计的反馈控制,并证明所提控制律的收敛性.以2比特随机量子系统为例进行数值仿真实验,通过与基于QST-OADM (Quantum state tomography based on OADM)算法和OPG-ADMM (Online proximal gradient-based alternating direction method of multipliers)算法的量子反馈控制方案的性能对比,验证了所提控制方案的优越性.展开更多
基金theNational+4 种基金 Natural Science Foundation of China
文摘In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the solution of an algebraic Riccati equation (ARE) and makes the H∞norm of the closedloop transfer function matrix from disturbance inputs to controlled outputs less than a given constant which ensure the stability of the overall controlled system at each iteration. The given example shows that the convergence of the algorithm is satisfactory.
基金Project(9140A05030109HK01)supported by Equipment Pre-research Foundation,China
文摘It is a complicated nonlinear controlling problem to conduct a two-dimensional trajectory correction of rockets.By establishing the aerodynamic correction force mathematical model of rockets on nose cone swinging,the linear control is realized by the dynamic inverse nonlinear controlling theory and the three-time-scale separation method.The control ability and the simulation results are also tested and verified.The results show that the output responses of system track the expected curve well and the error is controlled in a given margin.The maximum correction is about±314 m in the lengthwise direction and±1 212 m in the crosswise direction from the moment of 5 s to the drop-point time when the angle of fire is 55°.Thus,based on the dynamic inverse control of feedback linearization,the trajectory correction capability of nose cone swinging can satisfy the requirements of two-dimensional ballistic correction,and the validity and effectiveness of the method are proved.
文摘现代航天器通常携带大量的液体推进剂,在轨运行时推进剂的消耗将导致等效模型参数的改变.为了获取准确的等效模型参数并将其引入GNC(guidance,navigation and control)系统闭环控制,提高航天器的姿态控制精度,文章提出一种基于平方根容积卡尔曼滤波(SR-CKF)的等效模型参数在轨辨识策略.首先,为了建立适用于金属膜片贮箱的等效模型,在等效球摆模型的悬挂点施加扭簧-阻尼器以等效金属膜片对推进剂的刚度-阻尼效应,并借助Kane方法建立了航天器刚-液耦合动力学方程.其次,针对状态反馈反步控制器中等效模型参数未知的情形,提出一种基于SR-CKF的等效模型参数在轨辨识策略.该策略可在航天器完成一次大角度姿态机动任务的同时,根据星载角速度计数据在线辨识出等效模型的各项参数以及贮箱内推进剂的剩余量,并预测出推进剂的分布运动状态.最后,数值仿真结果表明了提出的在轨辨识策略的有效性和必要性.文章的工作对于航天器GNC系统中等效模型的校准迭代、研究推进剂在轨晃动行为及预测航天器服役年限具有重要参考价值.
文摘This paper studies the robust stochastic stabilization and robust H∞ control for linear time-delay systems with both Markovian jump parameters and unknown norm-bounded parameter uncertainties. This problem can be solved on the basis of stochastic Lyapunov approach and linear matrix inequality (LMI) technique. Sufficient conditions for the existence of stochastic stabilization and robust H∞ state feedback controller are presented in terms of a set of solutions of coupled LMIs. Finally, a numerical example is included to demonstrate the practicability of the proposed methods.
文摘In recent years,unmanned aerial vehicles(UAVs)have acquired an increasing interest due to their wide range of applications in military,scientific,and civilian fields.One of the quadcopter limitations is its lack of full actuation property which limits its mobility and trajectory tracking capabilities.In this work,an overactuated quadcopter design and control,which allows independent tilting of the rotors around their arm axis,is presented.Quadcopter with this added tilting mechanism makes it possible to overcome the aforementioned mobility limitation by achieving full authority on torque and force vectoring.The tilting property increases the control inputs to 8(the 4 propeller rotation speed plus the 4 rotor tilting angles)which gives a full control on the quadcopter states.Extensive mathematical model for the tilt rotor quadcopter is derived based on the Newton-Euler method.Furthermore,the feedback linearization method is used to linearize the model and a mixed sensitivity H∞optimal controller is then designed and synthesized to achieve the required performance and stability.The controlled system is simulated to assure the validity of the proposed controller and the quadcopter design.The controller is tested for its effectiveness in rejecting disturbances,attenuating sensor noise,and coping with the model uncertainties.Moreover,a complicated trajectory is examined in which the tilt rotor quadcopter has been successfully followed.The test results show the supremacy of the overactuated quadcopter over the traditional one.
文摘永磁同步电机因其结构紧凑、噪声较少、功耗较少、运行速度快、操作稳定,已被普遍采用。针对永磁同步电机弱磁控制过程中,转速环参数选取采用传统PI(proportional-integral)控制方法,依靠经验整定参数,外界抗干扰能力较差、难以保证在各运行区间具有优良性能等问题,提出了一种基于减法平均优化算法的永磁同步电机的弱磁和MTPA(maximum torque per ampere)控制的宽运行范围方法。将智能寻优算法、MTPA控制、弱磁控制三者相结合,利用减法平均优化算法优化PI控制器的参数,提高了系统的响应性能和抗干扰能力;工作电压未超过电压极限圆使用MTPA控制策略运行;工作电压超过电压极限圆利用电压闭环反馈,进行弱磁控制。使用MATLAB/Simulink构建的永磁同步电机弱磁控制仿真模拟,通过PI控制器和减法平均优化算法优化后的PI控制器性能对比,从仿真结果得到控制器方法的有效性。实验有效证明了该控制方法能够解决各种运行工况下控制器参数的优化整定问题,提高电机控制精度。
文摘研究了n比特随机量子系统实时状态估计及其反馈控制的问题.对于连续弱测量(Continuous weak measurement, CWM)过程存在高斯噪声的情况,基于在线交替方向乘子法(Online alternating direction multiplier method,OADM)推导出一种适用于n比特随机量子系统的实时量子状态估计算法,即QSE-OADM (Quantum state estimation based on OADM).运用李雅普诺夫方法设计控制律,实现基于实时量子状态估计的反馈控制,并证明所提控制律的收敛性.以2比特随机量子系统为例进行数值仿真实验,通过与基于QST-OADM (Quantum state tomography based on OADM)算法和OPG-ADMM (Online proximal gradient-based alternating direction method of multipliers)算法的量子反馈控制方案的性能对比,验证了所提控制方案的优越性.