The power consumption of a variable optical attenuator(VOA) array based on a silica planar lightwave circuit was investigated. The thermal field profile of the device was optimized using the finite-element analysis....The power consumption of a variable optical attenuator(VOA) array based on a silica planar lightwave circuit was investigated. The thermal field profile of the device was optimized using the finite-element analysis. The simulation results showed that the power consumption reduces as the depth of the heat-insulating grooves is deeper, the up-cladding is thinner,the down-cladding is thicker, and the width of the cladding ridge is narrower. The materials component and thickness of the electrodes were also optimized to guarantee the driving voltage under 5 V. The power consumption was successfully reduced to as low as 155 mW at an attenuation of 30 dB in the experiment.展开更多
This paper reviews recent advances in radar sensor design for low-power healthcare,indoor real-time positioning and other applications of IoT.Various radar front-end architectures and digital processing methods are pr...This paper reviews recent advances in radar sensor design for low-power healthcare,indoor real-time positioning and other applications of IoT.Various radar front-end architectures and digital processing methods are proposed to improve the detection performance including detection accuracy,detection range and power consumption.While many of the reported designs were prototypes for concept verification,several integrated radar systems have been demonstrated with reliable measured results with demo systems.A performance comparison of latest radar chip designs has been provided to show their features of different architectures.With great development of IoT,short-range low-power radar sensors for healthcare and indoor positioning applications will attract more and more research interests in the near future.展开更多
We report on the design and fabrication of λ-7.2μm distributed feedback quantum cascade lasers lot very high temperature cw operation and low electrical power consumption. The cw operation is reported above 90℃. Fo...We report on the design and fabrication of λ-7.2μm distributed feedback quantum cascade lasers lot very high temperature cw operation and low electrical power consumption. The cw operation is reported above 90℃. For a 2-mm-long and 10-μm-wide laser coated with high-reflectivity on the rear facet, more than 170mW of output power is obtained at 20℃ with a threshold power consumption of 2.4 W, corresponding to 30mW with a threshold power consumption of 3.9 W at 90℃. Robust single-mode emission with a side-mode suppression ratio above 25 dB is continuously tunable by the heat sink temperature or injection current.展开更多
A novel CMOS atto-ampere current mirror (AACM) is proposed which reaches the minimum yet reported current range of 0.4 aA. Operation of this circuit is based on the source voltage modulation instead of the conventio...A novel CMOS atto-ampere current mirror (AACM) is proposed which reaches the minimum yet reported current range of 0.4 aA. Operation of this circuit is based on the source voltage modulation instead of the conventionally used gate voltage modulation which interestingly prevents usage of commonly required voltage shifting in those circuits. The proposed circuit has a simple structure prohibiting large chip area consumption which consumes extremely low power of 1.5 μW. It is thus the best choice for ultra low power low voltage (ULPLV) applications. By using a very simple frequency compensation technique, its bandwidth is widened to 15.8 kHz. Simulation results in SMIC (Semiconductor Manufacturing International Corporation) 0.18 μm CMOS technology with Hspice are presented to demonstrate the validation of the proposed current mirror.展开更多
The magnetic improvised explosive devices (IEDs), also commonly known as a type of a sticky bomb, is simply constructed devices yet very lethal. This paper puts forward the idea of an electronic compass that is capa...The magnetic improvised explosive devices (IEDs), also commonly known as a type of a sticky bomb, is simply constructed devices yet very lethal. This paper puts forward the idea of an electronic compass that is capable of sensing the change of a magnetic field generated by a magnet and translating it into interpretable data, which could act as the base for the further studies and assist in developing a greener automated system for detecting this device. The electronic compass is specifically chosen for reducing power consumption of systems in addition to the fact that it is available at a low cost.展开更多
A novel low power and low voltage current mirror with a very low current copy error is presented and the principle of its operation is discussed. In this circuit, the gain boosting regulated cascode scheme is used to ...A novel low power and low voltage current mirror with a very low current copy error is presented and the principle of its operation is discussed. In this circuit, the gain boosting regulated cascode scheme is used to improve the output resistance, while using inverter as an amplifier. The simulation results with HSPICE in TSMC 0.18 μm CMOS technology are given, which verify the high performance of the proposed structure. Simulation results show an input resistance of 0.014 Ω and an output resistance of 3 GΩ. The current copy error is favorable as low as 0.002% together with an input (the minimum input voltage of Vin,min- 0.24 V) and an output (the minimum output voltage of Vout,min~ 0.16 V) compliances while working with the 1 V power supply and the 50 μA input current. The current copy error is near zero at the input current of 27 μA. It consumes only 76μW and introduces a very low output offset current of 50 pA.展开更多
The paper proposes a low power non-volatile baseband processor with wake-up identification(WUI) receiver for LR-WPAN transceiver.It consists of WUI receiver,main receiver,transmitter,non-volatile memory(NVM) and power...The paper proposes a low power non-volatile baseband processor with wake-up identification(WUI) receiver for LR-WPAN transceiver.It consists of WUI receiver,main receiver,transmitter,non-volatile memory(NVM) and power management module.The main receiver adopts a unified simplified synchronization method and channel codec with proactive Reed-Solomon Bypass technique,which increases the robustness and energy efficiency of receiver.The WUI receiver specifies the communication node and wakes up the transceiver to reduce average power consumption of the transceiver.The embedded NVM can backup/restore the states information of processor that avoids the loss of the state information caused by power failure and reduces the unnecessary power of repetitive computation when the processor is waked up from power down mode.The baseband processor is designed and verified on a FPGA board.The simulated power consumption of processor is 5.1uW for transmitting and 28.2μW for receiving.The WUI receiver technique reduces the average power consumption of transceiver remarkably.If the transceiver operates 30 seconds in every 15 minutes,the average power consumption of the transceiver can be reduced by two orders of magnitude.The NVM avoids the loss of the state information caused by power failure and energy waste caused by repetitive computation.展开更多
With the increase of the clock frequency and silicon integration, power aware computing has become a critical concern in the design of the embedded processor and system-on-chip (SoC). Dynamic voltage scaling (DVS)...With the increase of the clock frequency and silicon integration, power aware computing has become a critical concern in the design of the embedded processor and system-on-chip (SoC). Dynamic voltage scaling (DVS) is an effective method for low-power designs. However, traditional DVS methods have two deficiencies. First, they have a conservative safety margin which is not necessary for most of the time. Second, they are exclusively concerned with the critical stage and ignore the significant potential free slack time of the noncritical stage. These factors lead to a large amount of power waste. In this paper, a novel pipeline structure with ultra-low power consumption is proposed. It cuts off the safety margin and takes use of the noncritical stages at the same time. A prototype pipeline is designed in 0.13 μm technology and analyzed. The result shows that a large amount of energy can be saved by using this structure. Compared with the fixed voltage case, 50% of the energy can be saved, and with respect to the traditional adaptive voltage scaling design, 37.8% of the energy can be saved.展开更多
A kind of pseudo Gray code presentation of test patterns based on accumulation generators is presented and a low power test scheme is proposed to test computational function modules with contiguous subspace in very la...A kind of pseudo Gray code presentation of test patterns based on accumulation generators is presented and a low power test scheme is proposed to test computational function modules with contiguous subspace in very large scale integration (VLSI), especially in digital signal processors (DSP). If test patterns from accumulators for the modules are encoded in the pseudo Gray code presentation, the switching activities of the modules are reduced, and the decrease of the test power consumption is resulted in. Results of experimentation based on FPGA show that the test approach can reduce dynamic power consumption by an average of 17.40% for 8-bit ripple carry adder consisting of 3-2 counters. Then implementation of the low power test in hardware is exploited. Because of the reuse of adders, introduction of additional XOR logic gates is avoided successfully. The design minimizes additional hardware overhead for test and needs no adjustment of circuit structure. The low power test can detect any combinational stuck-at fault within the basic building block without any degradation of original circuit performance.展开更多
Traditional digital processing approaches are based on semiconductor transistors, which suffer from high power consumption, aggravating with technology node scaling. To solve definitively this problem, a number of eme...Traditional digital processing approaches are based on semiconductor transistors, which suffer from high power consumption, aggravating with technology node scaling. To solve definitively this problem, a number of emerging non-volatile nanodevices are under intense investigations. Meanwhile, novel computing circuits are invented to dig the full potential of the nanodevices. The combination of non-volatile nanodevices with suitable computing paradigms have many merits compared with the complementary metal-oxide-semiconductor transistor (CMOS) technology based structures, such as zero standby power, ultra-high density, non-volatility, and acceptable access speed. In this paper, we overview and compare the computing paradigms based on the emerging nanodevices towards ultra-low dissipation.展开更多
The new electrical degradation phenomenon of the AlGaN/GaN high electron mobility transistor(HEMT) treated by low power fluorine plasma is discovered. The saturated current, on-resistance, threshold voltage, gate le...The new electrical degradation phenomenon of the AlGaN/GaN high electron mobility transistor(HEMT) treated by low power fluorine plasma is discovered. The saturated current, on-resistance, threshold voltage, gate leakage and breakdown voltage show that each experiences a significant change in a short time stress, and then keeps unchangeable. The migration phenomenon of fluorine ions is further validated by the electron redistribution and breakdown voltage enhancement after off-state stress. These results suggest that the low power fluorine implant ion stays in an unstable state. It causes the electrical properties of AlGaN/GaN HEMT to present early degradation. A new migration and degradation mechanism of the low power fluorine implant ion under the off-stress electrical stress is proposed. The low power fluorine ions would drift at the beginning of the off-state stress, and then accumulate between gate and drain nearby the gate side. Due to the strong electronegativity of fluorine, the accumulation of the front fluorine ions would prevent the subsequent fluorine ions from drifting, thereby alleviating further the degradation of AlGaN/GaN HEMT electrical properties.展开更多
A state of the art ultra-low power small sized transceiver design has been proposed.This device consists of four blocks,including a frequency synthesizer(FS),a crystal oscillator(XO),transmitter and receiver attached ...A state of the art ultra-low power small sized transceiver design has been proposed.This device consists of four blocks,including a frequency synthesizer(FS),a crystal oscillator(XO),transmitter and receiver attached with an antenna.It has been seen that wireless information technology and systems have played a vital role in the transformation of society in different aspects of life.Mobile wireless communications including WiMAX/4G have attracted researchers and developers.WiMAX/4G applications need a transceiver that can be used in the worst channel conditions,but with low power consumption and low input voltage at the 5.8 GHz frequency.The proposed transceiver operates on 1.2 V.The operating frequency,noise figure(NF)and receiver gain are 5.8 GHz,4.0 dB and 90 dB respectively.It is a highly compatible transceiver with all the 4G technologies.Implementation details and results have revealed that the proposed transceiver is much more efficient than the previously proposed transceivers in literature.展开更多
To achieve a better insight into the far-field plasma spatial distribution and evolution characteristics of the 300 W class low-power Hall thruster(LHT)for commercial aerospace applications,a dedicated and integrated ...To achieve a better insight into the far-field plasma spatial distribution and evolution characteristics of the 300 W class low-power Hall thruster(LHT)for commercial aerospace applications,a dedicated and integrated plasma diagnostic system composed of seventeen Faraday cups(FC)and two triple Langmuir probes(TLP)is established to investigate the timeaveraged in situ spatial distribution characteristics of far-field ions and electrons.The ion current density(ICD),plasma potential,plasma density,and electron temperature at 1000 mm downstream of 300 W class LHT for commercial aerospace applications in the azimuthal angle range of-90°to 90°were investigated under the conditions of different anode mass flow rates and discharge voltages.The results demonstrated that ICD,beam divergence angle,and mass utilization efficiency increased with increasing anode mass rate.The double-wings phenomenon was observed in the spatial distribution of ICD at large angles from the thruster axis,which is attributed to charge exchange collisions at increasing vacuum backpressure.The plasma electron temperature,electron density,and plasma potential parameters derived from the TLP decreased rapidly in the angle range from 0°to 30°and did not exhibit significant variations above 30°,which was also in good agreement with the results of the measured divergence angle of the FC.The discrepancy of average ion speed was calculated.The maximum error is better than 31.5%which checks the consistency between the TLP’s results and that of FC to some extent.展开更多
We propose a novel scheme, called on-line cache resizing (OCR), to dynamically resize the cache and meet the size requirement of each application. At each periodic interval, the scheme gathers the cache hit-miss sta...We propose a novel scheme, called on-line cache resizing (OCR), to dynamically resize the cache and meet the size requirement of each application. At each periodic interval, the scheme gathers the cache hit-miss statistics at runtime using an extra tag array. These executing statistics serve as inputs to an analytical model of cache energy. The scheme uses energy as a primary metric to dynamically increase/decrease the number of active cache ways for the next interval. The scheme minimizes the active cache size to save energy with minimal performance loss. The simulation with SPEC 2000 benchmarks shows that OCR results in an average of 38.4% energy saving compared with fixed-size caches, with only 2.0% performance loss.展开更多
A modelling study is performed to compare the plasma flow and heat transfer characteristics of low-power arc-heated thrusters (arcjets) for three different propellants: hydrogen, nitrogen and argon. The all-speed S...A modelling study is performed to compare the plasma flow and heat transfer characteristics of low-power arc-heated thrusters (arcjets) for three different propellants: hydrogen, nitrogen and argon. The all-speed SIMPLE algorithm is employed to solve the governing equations, which take into account the effects of compressibility, Lorentz force and Joule heating, as well as the temperature- and pressure-dependence of the gas properties. The temperature, velocity and Mach number distributions calculated within the thruster nozzle obtained with different propellant gases are compared for the same thruster structure, dimensions, inlet-gas stagnant pressure and arc currents. The temperature distributions in the solid region of the anode-nozzle wall are also given. It is found that the flow and energy conversion processes in the thruster nozzle show many similar features for all three propellants. For example, the propellant is heated mainly in the near-cathode and constrictor region, with the highest plasma temperature appearing near the cathode tip; the flow transition from the subsonic to supersonic regime occurs within the constrictor region; the highest axial velocity appears inside the nozzle; and most of the input propellant flows towards the thruster exit through the cooler gas region near the anode-nozzle wall. However, since the properties of hydrogen, nitrogen and argon, especially their molecular weights, specific enthMpies and thermal conductivities, are different, there are appreciable differences in arcjet performance. For example, compared to the other two propellants, the hydrogen arcjet thruster shows a higher plasma temperature in the arc region, and higher axial velocity but lower temperature at the thruster exit. Correspondingly, the hydrogen arcjet thruster has the highest specific impulse and arc voltage for the same inlet stagnant pressure and arc current. The predictions of the modelling are compared favourably with available experimental results.展开更多
In this letter,the Ta/HfO/BN/TiN resistive switching devices are fabricated and they exhibit low power consumption and high uniformity each.The reset current is reduced for the HfO/BN bilayer device compared with that...In this letter,the Ta/HfO/BN/TiN resistive switching devices are fabricated and they exhibit low power consumption and high uniformity each.The reset current is reduced for the HfO/BN bilayer device compared with that for the Ta/HfO/TiN structure.Furthermore,the reset current decreases with increasing BN thickness.The HfOlayer is a dominating switching layer,while the low-permittivity and high-resistivity BN layer acts as a barrier of electrons injection into TiN electrode.The current conduction mechanism of low resistance state in the HfO/BN bilayer device is space-chargelimited current(SCLC),while it is Ohmic conduction in the HfOdevice.展开更多
For the reliability and power consumption issues of Ethernet data transmission based on the field programmable gate array (FPGA), a low-power consumption design method is proposed, which is suitable for FPGA impleme...For the reliability and power consumption issues of Ethernet data transmission based on the field programmable gate array (FPGA), a low-power consumption design method is proposed, which is suitable for FPGA implementation. To reduce the dynamic power consumption of integrated circuit (IC) design, the proposed method adopts the dynamic control of the clock frequency. For most of the time, when the port is in the idle state or lower-rate state, users can reduce or even turn off the reading clock frequency and reduce the clock flip frequency in order to reduce the dynamic power consumption. When the receiving rate is high, the reading clock frequency will be improved timely to ensure that no data will lost. Simulated and verified by Modelsim, the proposed method can dynamically control the clock frequency, including the dynamic switching of high-speed and low-speed clock flip rates, or stop of the clock flip.展开更多
A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architectu...A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architecture with positive channel metal oxide semiconductor(PMOS) differential input transistors and sub-threshold technology are applied under the low supply voltage.Simulation results show that this amplifier has significantly low power,while maintaining almost the same gain,bandwidth and other key performances.The power required is only 0.12 mW,which is applicable to low-power and low-voltage real-time signal acquisition and processing system.展开更多
We report on the room-temperature cascade laser (QCL) at λ -4.7μm. cw operation of a surface grating Both grating design and material distributed feedback (DFB) quantum optimization are used to decrease the thre...We report on the room-temperature cascade laser (QCL) at λ -4.7μm. cw operation of a surface grating Both grating design and material distributed feedback (DFB) quantum optimization are used to decrease the threshold current density and to increase the output power. For a high-reflectivity-coated 13-μm-wide and 4- mm-long laser, high wall-plug efficiency of 6% is obtained at 20℃ from a single facet producing over I W of ew output power. The threshold current density of DFB QCL is as low as 1.13kA/cm^2 at 10℃ and 1.34kA/cm2 at 30℃ in cw mode. Stable single-mode emission with a side-mode suppression ratio of about 30 dB is observed in tile working temperature range of 20-50℃.展开更多
For a long time, because of the lack of investment capital and enough attentions, the overall constructions of rural power grid were far behind than the urban power grid in Chongqing Jiangbei Power Company. The low vo...For a long time, because of the lack of investment capital and enough attentions, the overall constructions of rural power grid were far behind than the urban power grid in Chongqing Jiangbei Power Company. The low voltage problems were highlighted in the rural power grid due to the characteristics of rural power grid. Using the distribution network flow calculation method, we evaluated the low voltage problems of the rural power grid which belongs to Chongqing Jiangbei Power Company. In addition, we collected the data of distribution transformers in electricity consumption peak period. Some practical management strategies were proposed by the analysis and evaluation of potential and appeared low voltage problems.展开更多
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2015AA016902)the National Nature Science Foundation of China(Grant Nos.61435013,61405188,and 61627820)
文摘The power consumption of a variable optical attenuator(VOA) array based on a silica planar lightwave circuit was investigated. The thermal field profile of the device was optimized using the finite-element analysis. The simulation results showed that the power consumption reduces as the depth of the heat-insulating grooves is deeper, the up-cladding is thinner,the down-cladding is thicker, and the width of the cladding ridge is narrower. The materials component and thickness of the electrodes were also optimized to guarantee the driving voltage under 5 V. The power consumption was successfully reduced to as low as 155 mW at an attenuation of 30 dB in the experiment.
文摘This paper reviews recent advances in radar sensor design for low-power healthcare,indoor real-time positioning and other applications of IoT.Various radar front-end architectures and digital processing methods are proposed to improve the detection performance including detection accuracy,detection range and power consumption.While many of the reported designs were prototypes for concept verification,several integrated radar systems have been demonstrated with reliable measured results with demo systems.A performance comparison of latest radar chip designs has been provided to show their features of different architectures.With great development of IoT,short-range low-power radar sensors for healthcare and indoor positioning applications will attract more and more research interests in the near future.
基金Supported by the National Basic Research Program of China under Grant No 2013CB632801the National Key Research and Development Program under Grant No 2016YFB0402303+2 种基金the National Natural Science Foundation of China under Grant Nos61435014,61627822,61574136 and 61306058the Key Projects of Chinese Academy of Sciences under Grant No ZDRW-XH-2016-4the Beijing Natural Science Foundation under Grant No 4162060
文摘We report on the design and fabrication of λ-7.2μm distributed feedback quantum cascade lasers lot very high temperature cw operation and low electrical power consumption. The cw operation is reported above 90℃. For a 2-mm-long and 10-μm-wide laser coated with high-reflectivity on the rear facet, more than 170mW of output power is obtained at 20℃ with a threshold power consumption of 2.4 W, corresponding to 30mW with a threshold power consumption of 3.9 W at 90℃. Robust single-mode emission with a side-mode suppression ratio above 25 dB is continuously tunable by the heat sink temperature or injection current.
文摘A novel CMOS atto-ampere current mirror (AACM) is proposed which reaches the minimum yet reported current range of 0.4 aA. Operation of this circuit is based on the source voltage modulation instead of the conventionally used gate voltage modulation which interestingly prevents usage of commonly required voltage shifting in those circuits. The proposed circuit has a simple structure prohibiting large chip area consumption which consumes extremely low power of 1.5 μW. It is thus the best choice for ultra low power low voltage (ULPLV) applications. By using a very simple frequency compensation technique, its bandwidth is widened to 15.8 kHz. Simulation results in SMIC (Semiconductor Manufacturing International Corporation) 0.18 μm CMOS technology with Hspice are presented to demonstrate the validation of the proposed current mirror.
基金supported by the Malaysia Ministry of Higher Education under FRGS Grant No.6071306
文摘The magnetic improvised explosive devices (IEDs), also commonly known as a type of a sticky bomb, is simply constructed devices yet very lethal. This paper puts forward the idea of an electronic compass that is capable of sensing the change of a magnetic field generated by a magnet and translating it into interpretable data, which could act as the base for the further studies and assist in developing a greener automated system for detecting this device. The electronic compass is specifically chosen for reducing power consumption of systems in addition to the fact that it is available at a low cost.
基金supported by the Iran University of Science and Technology
文摘A novel low power and low voltage current mirror with a very low current copy error is presented and the principle of its operation is discussed. In this circuit, the gain boosting regulated cascode scheme is used to improve the output resistance, while using inverter as an amplifier. The simulation results with HSPICE in TSMC 0.18 μm CMOS technology are given, which verify the high performance of the proposed structure. Simulation results show an input resistance of 0.014 Ω and an output resistance of 3 GΩ. The current copy error is favorable as low as 0.002% together with an input (the minimum input voltage of Vin,min- 0.24 V) and an output (the minimum output voltage of Vout,min~ 0.16 V) compliances while working with the 1 V power supply and the 50 μA input current. The current copy error is near zero at the input current of 27 μA. It consumes only 76μW and introduces a very low output offset current of 50 pA.
基金supported in part by the National Natural Science Foundation of China(No.61306027)
文摘The paper proposes a low power non-volatile baseband processor with wake-up identification(WUI) receiver for LR-WPAN transceiver.It consists of WUI receiver,main receiver,transmitter,non-volatile memory(NVM) and power management module.The main receiver adopts a unified simplified synchronization method and channel codec with proactive Reed-Solomon Bypass technique,which increases the robustness and energy efficiency of receiver.The WUI receiver specifies the communication node and wakes up the transceiver to reduce average power consumption of the transceiver.The embedded NVM can backup/restore the states information of processor that avoids the loss of the state information caused by power failure and reduces the unnecessary power of repetitive computation when the processor is waked up from power down mode.The baseband processor is designed and verified on a FPGA board.The simulated power consumption of processor is 5.1uW for transmitting and 28.2μW for receiving.The WUI receiver technique reduces the average power consumption of transceiver remarkably.If the transceiver operates 30 seconds in every 15 minutes,the average power consumption of the transceiver can be reduced by two orders of magnitude.The NVM avoids the loss of the state information caused by power failure and energy waste caused by repetitive computation.
基金supported by the Important National S&T Special Project of China under Grant No.2011ZX01034-002-001-2the Fundamental Research Funds for the Central Universities under Grant No.ZYGX2009J026
文摘With the increase of the clock frequency and silicon integration, power aware computing has become a critical concern in the design of the embedded processor and system-on-chip (SoC). Dynamic voltage scaling (DVS) is an effective method for low-power designs. However, traditional DVS methods have two deficiencies. First, they have a conservative safety margin which is not necessary for most of the time. Second, they are exclusively concerned with the critical stage and ignore the significant potential free slack time of the noncritical stage. These factors lead to a large amount of power waste. In this paper, a novel pipeline structure with ultra-low power consumption is proposed. It cuts off the safety margin and takes use of the noncritical stages at the same time. A prototype pipeline is designed in 0.13 μm technology and analyzed. The result shows that a large amount of energy can be saved by using this structure. Compared with the fixed voltage case, 50% of the energy can be saved, and with respect to the traditional adaptive voltage scaling design, 37.8% of the energy can be saved.
基金supported by the National Natural Science Foundation of China under Grant No.90407007University Science Foundation of China under Grant No R0820207
文摘A kind of pseudo Gray code presentation of test patterns based on accumulation generators is presented and a low power test scheme is proposed to test computational function modules with contiguous subspace in very large scale integration (VLSI), especially in digital signal processors (DSP). If test patterns from accumulators for the modules are encoded in the pseudo Gray code presentation, the switching activities of the modules are reduced, and the decrease of the test power consumption is resulted in. Results of experimentation based on FPGA show that the test approach can reduce dynamic power consumption by an average of 17.40% for 8-bit ripple carry adder consisting of 3-2 counters. Then implementation of the low power test in hardware is exploited. Because of the reuse of adders, introduction of additional XOR logic gates is avoided successfully. The design minimizes additional hardware overhead for test and needs no adjustment of circuit structure. The low power test can detect any combinational stuck-at fault within the basic building block without any degradation of original circuit performance.
文摘Traditional digital processing approaches are based on semiconductor transistors, which suffer from high power consumption, aggravating with technology node scaling. To solve definitively this problem, a number of emerging non-volatile nanodevices are under intense investigations. Meanwhile, novel computing circuits are invented to dig the full potential of the nanodevices. The combination of non-volatile nanodevices with suitable computing paradigms have many merits compared with the complementary metal-oxide-semiconductor transistor (CMOS) technology based structures, such as zero standby power, ultra-high density, non-volatility, and acceptable access speed. In this paper, we overview and compare the computing paradigms based on the emerging nanodevices towards ultra-low dissipation.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.61334002) and the National Natural Science Foundation of China(Grant Nos.61604114,61404097,and 61504099)
文摘The new electrical degradation phenomenon of the AlGaN/GaN high electron mobility transistor(HEMT) treated by low power fluorine plasma is discovered. The saturated current, on-resistance, threshold voltage, gate leakage and breakdown voltage show that each experiences a significant change in a short time stress, and then keeps unchangeable. The migration phenomenon of fluorine ions is further validated by the electron redistribution and breakdown voltage enhancement after off-state stress. These results suggest that the low power fluorine implant ion stays in an unstable state. It causes the electrical properties of AlGaN/GaN HEMT to present early degradation. A new migration and degradation mechanism of the low power fluorine implant ion under the off-stress electrical stress is proposed. The low power fluorine ions would drift at the beginning of the off-state stress, and then accumulate between gate and drain nearby the gate side. Due to the strong electronegativity of fluorine, the accumulation of the front fluorine ions would prevent the subsequent fluorine ions from drifting, thereby alleviating further the degradation of AlGaN/GaN HEMT electrical properties.
基金Supported by Young Scientists Fund of the National Natural Science Foundation of China(61201040)
文摘A state of the art ultra-low power small sized transceiver design has been proposed.This device consists of four blocks,including a frequency synthesizer(FS),a crystal oscillator(XO),transmitter and receiver attached with an antenna.It has been seen that wireless information technology and systems have played a vital role in the transformation of society in different aspects of life.Mobile wireless communications including WiMAX/4G have attracted researchers and developers.WiMAX/4G applications need a transceiver that can be used in the worst channel conditions,but with low power consumption and low input voltage at the 5.8 GHz frequency.The proposed transceiver operates on 1.2 V.The operating frequency,noise figure(NF)and receiver gain are 5.8 GHz,4.0 dB and 90 dB respectively.It is a highly compatible transceiver with all the 4G technologies.Implementation details and results have revealed that the proposed transceiver is much more efficient than the previously proposed transceivers in literature.
基金National Natural Science Foundation of China(Nos.12005087 and 61901204)the Science and Technology Plan of Gansu Province(No.20JR10RA478)+1 种基金the Military Test Instruments Program(No.2006ZCTF0054)the Key Laboratory Funds for Science and Technology on Vacuum Technology and Physics Laboratory(No.HTKJ2019KL510003)。
文摘To achieve a better insight into the far-field plasma spatial distribution and evolution characteristics of the 300 W class low-power Hall thruster(LHT)for commercial aerospace applications,a dedicated and integrated plasma diagnostic system composed of seventeen Faraday cups(FC)and two triple Langmuir probes(TLP)is established to investigate the timeaveraged in situ spatial distribution characteristics of far-field ions and electrons.The ion current density(ICD),plasma potential,plasma density,and electron temperature at 1000 mm downstream of 300 W class LHT for commercial aerospace applications in the azimuthal angle range of-90°to 90°were investigated under the conditions of different anode mass flow rates and discharge voltages.The results demonstrated that ICD,beam divergence angle,and mass utilization efficiency increased with increasing anode mass rate.The double-wings phenomenon was observed in the spatial distribution of ICD at large angles from the thruster axis,which is attributed to charge exchange collisions at increasing vacuum backpressure.The plasma electron temperature,electron density,and plasma potential parameters derived from the TLP decreased rapidly in the angle range from 0°to 30°and did not exhibit significant variations above 30°,which was also in good agreement with the results of the measured divergence angle of the FC.The discrepancy of average ion speed was calculated.The maximum error is better than 31.5%which checks the consistency between the TLP’s results and that of FC to some extent.
基金The High Technology Research and Development Program of China (No.2006AA01Z226)the Natural Science Foundation of Hubei (No.2007ABD002)the Ministry of Education-INTEL Information Technology Foundation (No.MOE-INTEL-08-05)
文摘We propose a novel scheme, called on-line cache resizing (OCR), to dynamically resize the cache and meet the size requirement of each application. At each periodic interval, the scheme gathers the cache hit-miss statistics at runtime using an extra tag array. These executing statistics serve as inputs to an analytical model of cache energy. The scheme uses energy as a primary metric to dynamically increase/decrease the number of active cache ways for the next interval. The scheme minimizes the active cache size to save energy with minimal performance loss. The simulation with SPEC 2000 benchmarks shows that OCR results in an average of 38.4% energy saving compared with fixed-size caches, with only 2.0% performance loss.
基金supported by National Natural Science Foundation of China (Nos.50836007, 10921062)
文摘A modelling study is performed to compare the plasma flow and heat transfer characteristics of low-power arc-heated thrusters (arcjets) for three different propellants: hydrogen, nitrogen and argon. The all-speed SIMPLE algorithm is employed to solve the governing equations, which take into account the effects of compressibility, Lorentz force and Joule heating, as well as the temperature- and pressure-dependence of the gas properties. The temperature, velocity and Mach number distributions calculated within the thruster nozzle obtained with different propellant gases are compared for the same thruster structure, dimensions, inlet-gas stagnant pressure and arc currents. The temperature distributions in the solid region of the anode-nozzle wall are also given. It is found that the flow and energy conversion processes in the thruster nozzle show many similar features for all three propellants. For example, the propellant is heated mainly in the near-cathode and constrictor region, with the highest plasma temperature appearing near the cathode tip; the flow transition from the subsonic to supersonic regime occurs within the constrictor region; the highest axial velocity appears inside the nozzle; and most of the input propellant flows towards the thruster exit through the cooler gas region near the anode-nozzle wall. However, since the properties of hydrogen, nitrogen and argon, especially their molecular weights, specific enthMpies and thermal conductivities, are different, there are appreciable differences in arcjet performance. For example, compared to the other two propellants, the hydrogen arcjet thruster shows a higher plasma temperature in the arc region, and higher axial velocity but lower temperature at the thruster exit. Correspondingly, the hydrogen arcjet thruster has the highest specific impulse and arc voltage for the same inlet stagnant pressure and arc current. The predictions of the modelling are compared favourably with available experimental results.
基金supported by the National Natural Science Foundation of China(Grant Nos.61274113,11204212,61404091,51502203,and 51502204)the Tianjin Natural Science Foundation,China(Grant Nos.14JCZDJC31500 and 14JCQNJC00800)the Tianjin Science and Technology Developmental Funds of Universities and Colleges,China(Grant No.20130701)
文摘In this letter,the Ta/HfO/BN/TiN resistive switching devices are fabricated and they exhibit low power consumption and high uniformity each.The reset current is reduced for the HfO/BN bilayer device compared with that for the Ta/HfO/TiN structure.Furthermore,the reset current decreases with increasing BN thickness.The HfOlayer is a dominating switching layer,while the low-permittivity and high-resistivity BN layer acts as a barrier of electrons injection into TiN electrode.The current conduction mechanism of low resistance state in the HfO/BN bilayer device is space-chargelimited current(SCLC),while it is Ohmic conduction in the HfOdevice.
基金supported by the Natural Science Foundation of China under Grant No.61376024 and No.61306024Natural Science Foundation of Guangdong Province under Grant No.S2013040014366Basic Research Programme of Shenzhen under Grant No.JCYJ20140417113430642 and No.JCYJ20140901003939020
文摘For the reliability and power consumption issues of Ethernet data transmission based on the field programmable gate array (FPGA), a low-power consumption design method is proposed, which is suitable for FPGA implementation. To reduce the dynamic power consumption of integrated circuit (IC) design, the proposed method adopts the dynamic control of the clock frequency. For most of the time, when the port is in the idle state or lower-rate state, users can reduce or even turn off the reading clock frequency and reduce the clock flip frequency in order to reduce the dynamic power consumption. When the receiving rate is high, the reading clock frequency will be improved timely to ensure that no data will lost. Simulated and verified by Modelsim, the proposed method can dynamically control the clock frequency, including the dynamic switching of high-speed and low-speed clock flip rates, or stop of the clock flip.
基金Sponsored by the National Natural Science Foundation of China (60843005)the Basic Research Foundation of Beijing Institute of Technology(20070142018)
文摘A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architecture with positive channel metal oxide semiconductor(PMOS) differential input transistors and sub-threshold technology are applied under the low supply voltage.Simulation results show that this amplifier has significantly low power,while maintaining almost the same gain,bandwidth and other key performances.The power required is only 0.12 mW,which is applicable to low-power and low-voltage real-time signal acquisition and processing system.
基金Supported by the National Basic Research Program of China under Grant Nos 2013CB632801 and 2013CB632803the National Natural Science Foundation of China under Grant Nos 61435014,61306058 and 61274094the Beijing Natural Science Foundation under Grant No 4144086
文摘We report on the room-temperature cascade laser (QCL) at λ -4.7μm. cw operation of a surface grating Both grating design and material distributed feedback (DFB) quantum optimization are used to decrease the threshold current density and to increase the output power. For a high-reflectivity-coated 13-μm-wide and 4- mm-long laser, high wall-plug efficiency of 6% is obtained at 20℃ from a single facet producing over I W of ew output power. The threshold current density of DFB QCL is as low as 1.13kA/cm^2 at 10℃ and 1.34kA/cm2 at 30℃ in cw mode. Stable single-mode emission with a side-mode suppression ratio of about 30 dB is observed in tile working temperature range of 20-50℃.
文摘For a long time, because of the lack of investment capital and enough attentions, the overall constructions of rural power grid were far behind than the urban power grid in Chongqing Jiangbei Power Company. The low voltage problems were highlighted in the rural power grid due to the characteristics of rural power grid. Using the distribution network flow calculation method, we evaluated the low voltage problems of the rural power grid which belongs to Chongqing Jiangbei Power Company. In addition, we collected the data of distribution transformers in electricity consumption peak period. Some practical management strategies were proposed by the analysis and evaluation of potential and appeared low voltage problems.