促使风电、光伏等分布式能源和电动汽车保有量快速增长。考虑电动汽车到电网(vehicle to grid,V2G)能量互动对多元化能源发电出力随机性及波动性的平抑作用,以及提升风/光电的消纳水平,采用虚拟电厂(virtual power plant,VPP)技术实现...促使风电、光伏等分布式能源和电动汽车保有量快速增长。考虑电动汽车到电网(vehicle to grid,V2G)能量互动对多元化能源发电出力随机性及波动性的平抑作用,以及提升风/光电的消纳水平,采用虚拟电厂(virtual power plant,VPP)技术实现对二者的统一协调管理,进而结合电动汽车全生命周期碳排放数量和分布式能源运行时碳排放数量,构建电动汽车参与的虚拟电厂整体多目标优化模型,采用粒子群优化算法对该模型进行求解,从而优化系统运行成本及碳排放成本。在结合真实数据配置的算例模型上进行实验分析,实验结果表明,提出的优化模型可以有效调度虚拟电厂各要素,充分发挥电动汽车V2G入网充放电带来的运行和碳排放收益,可以为低碳目标背景下电网系统的安全稳定运行提供技术参考。展开更多
在“双碳”目标背景下,为实现微电网系统的低碳排放和风电消纳最大化,提出了一种含碳捕集电厂(carbon capture power plant,CCPP)及电转气(power-to-gas,P2G)耦合的综合能源系统(integrated energy system,IES)和电车入网(vehicle to gr...在“双碳”目标背景下,为实现微电网系统的低碳排放和风电消纳最大化,提出了一种含碳捕集电厂(carbon capture power plant,CCPP)及电转气(power-to-gas,P2G)耦合的综合能源系统(integrated energy system,IES)和电车入网(vehicle to grid,V2G)的双层模型优化调度策略。首先,在低碳技术层面上,针对CCPP和P2G设备在时间上运行不同步的问题,在CCPP和P2G设备中间加设储液罐作为CO_(2)的缓冲站,建立含CCPP、P2G设备、燃气轮机的数学模型并建立阶梯碳交易对IES进行低碳排放约束;其次,为了充分发挥电动汽车负荷和储能的双重特性,以IES的弃风时段和高峰时段制定策略引导电动汽车进行充放电,来进行能量时移;最后,在经济效益层面上,以综合运行成本最低为目标函数,采用MATLAB调用GUROBI求解器进行求解。通过设置不同场景进行对比,结果表明,该调度策略能在提高微电网风电消纳水平的同时,实现系统的低碳经济运行。展开更多
文摘促使风电、光伏等分布式能源和电动汽车保有量快速增长。考虑电动汽车到电网(vehicle to grid,V2G)能量互动对多元化能源发电出力随机性及波动性的平抑作用,以及提升风/光电的消纳水平,采用虚拟电厂(virtual power plant,VPP)技术实现对二者的统一协调管理,进而结合电动汽车全生命周期碳排放数量和分布式能源运行时碳排放数量,构建电动汽车参与的虚拟电厂整体多目标优化模型,采用粒子群优化算法对该模型进行求解,从而优化系统运行成本及碳排放成本。在结合真实数据配置的算例模型上进行实验分析,实验结果表明,提出的优化模型可以有效调度虚拟电厂各要素,充分发挥电动汽车V2G入网充放电带来的运行和碳排放收益,可以为低碳目标背景下电网系统的安全稳定运行提供技术参考。
文摘在“双碳”目标背景下,为实现微电网系统的低碳排放和风电消纳最大化,提出了一种含碳捕集电厂(carbon capture power plant,CCPP)及电转气(power-to-gas,P2G)耦合的综合能源系统(integrated energy system,IES)和电车入网(vehicle to grid,V2G)的双层模型优化调度策略。首先,在低碳技术层面上,针对CCPP和P2G设备在时间上运行不同步的问题,在CCPP和P2G设备中间加设储液罐作为CO_(2)的缓冲站,建立含CCPP、P2G设备、燃气轮机的数学模型并建立阶梯碳交易对IES进行低碳排放约束;其次,为了充分发挥电动汽车负荷和储能的双重特性,以IES的弃风时段和高峰时段制定策略引导电动汽车进行充放电,来进行能量时移;最后,在经济效益层面上,以综合运行成本最低为目标函数,采用MATLAB调用GUROBI求解器进行求解。通过设置不同场景进行对比,结果表明,该调度策略能在提高微电网风电消纳水平的同时,实现系统的低碳经济运行。