期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Landsat 8的深圳市森林碳储量遥感反演研究 被引量:21
1
作者 邹琪 孙华 +3 位作者 王广兴 林辉 谭一凡 马中刚 《西北林学院学报》 CSCD 北大核心 2017年第4期164-171,共8页
以2014年Landsat 8遥感影像为数据源,研究了深圳市森林碳储量遥感反演模型的构建及其空间分布情况,对城市生态系统碳循环研究具有重要意义。采用分层随机抽样的方式布设168个样地,结合外业样地数据,从遥感影像中提取31个植被指数作为自... 以2014年Landsat 8遥感影像为数据源,研究了深圳市森林碳储量遥感反演模型的构建及其空间分布情况,对城市生态系统碳循环研究具有重要意义。采用分层随机抽样的方式布设168个样地,结合外业样地数据,从遥感影像中提取31个植被指数作为自变量,分别构建了多元线性回归模型、Logistic回归模型和Radical Basis Function(RBF)径向基函数神经网络模型,进而估算该地区的森林碳储量并比较分析。结果表明,RBF神经网络模型的估算精度最高,决定系数最大且均方根误差最小,分别为0.829t·hm^(-2)和9.131t·hm^(-2);Logistic回归模型估算精度次之,决定系数和均方根误差分别为0.523t·hm^(-2)和11.821t·hm^(-2);多元线性回归模型估算精度最低,决定系数最小,均方根误差最大,分别为0.438t·hm^(-2)和12.870t·hm^(-2)。可见,RBF神经网络模型能更好地模拟森林碳储量与各个因子之间的关系。研究区森林碳储量的空间分布特点表现为东南沿海部分碳储量大,中西部城市经济开发区碳储量小,与实际森林分布基本一致。 展开更多
关键词 碳储量 多元线性回归模型 logistic回归模型 rbf径向基函数神经网络 遥感影像 深圳市
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部