期刊文献+
共找到123篇文章
< 1 2 7 >
每页显示 20 50 100
基于LSH的时间子序列查询算法 被引量:6
1
作者 汤春蕾 董家麒 《计算机学报》 EI CSCD 北大核心 2012年第11期2228-2236,共9页
子序列的相似性查询是时间序列数据集中的一种重要操作,包括范围查询和k近邻查询.现有的大多算法是基于欧几里德距离或者DTW距离的,缺点在于查询效率低下.文中提出了一种新的基于LSH的距离度量方法,可以在保证查询结果质量的前提下,极... 子序列的相似性查询是时间序列数据集中的一种重要操作,包括范围查询和k近邻查询.现有的大多算法是基于欧几里德距离或者DTW距离的,缺点在于查询效率低下.文中提出了一种新的基于LSH的距离度量方法,可以在保证查询结果质量的前提下,极大提高相似性查询的效率;在此基础上,给出一种DS-Index索引结构,利用距离下界进行剪枝,进而还提出了两种优化的OLSH-Range和OLSH-kNN算法.实验是在真实的股票序列集上进行的,数据结果表明算法能快速精确地找出相似性查询结果. 展开更多
关键词 相似性查询 时间序列数据库 子序列 lsh 索引
在线阅读 下载PDF
基于LSH的中文文本快速检索 被引量:13
2
作者 蔡衡 李舟军 +1 位作者 孙健 李洋 《计算机科学》 CSCD 北大核心 2009年第8期201-204,230,共5页
目前,高维数据的快速检索问题已经受到越来越多的关注。当向量空间的维度高于10时,R-tree,Kd-tree,SR-tree的检索效率反而不如线性检索,而位置敏感的哈希(Locality Sensitive Hashing,缩写为LSH)算法成功地解决了高维近邻数据的快速检... 目前,高维数据的快速检索问题已经受到越来越多的关注。当向量空间的维度高于10时,R-tree,Kd-tree,SR-tree的检索效率反而不如线性检索,而位置敏感的哈希(Locality Sensitive Hashing,缩写为LSH)算法成功地解决了高维近邻数据的快速检索问题,因而受到国内外学术界的高度关注。首先介绍了LSH算法的基本原理和方法,然后使用多重探测的方法对二进制向量的LSH算法做了进一步改进。最后实现了这两种LSH算法,并通过详细的实验验证表明:在改进后的算法中,通过增加偏移量可以提高检索的召回率,而在不提高时间复杂度的情况下则可降低空间复杂度。 展开更多
关键词 高维数据 相似性检索 位置敏感的哈希 近邻 多重探测
在线阅读 下载PDF
云环境下基于LSH的分布式数据流聚类算法 被引量:3
3
作者 曲武 王莉军 韩晓光 《计算机科学》 CSCD 北大核心 2014年第11期195-202,共8页
近年来,随着计算机技术、信息处理技术在工业生产、信息处理等领域的广泛应用,会连续不断地产生大量随时间演变的序列型数据,构成时间序列数据流,如互联网新闻语料分析、网络入侵检测、股市行情分析和传感器网络数据分析等。实时数据流... 近年来,随着计算机技术、信息处理技术在工业生产、信息处理等领域的广泛应用,会连续不断地产生大量随时间演变的序列型数据,构成时间序列数据流,如互联网新闻语料分析、网络入侵检测、股市行情分析和传感器网络数据分析等。实时数据流聚类分析是当前数据流挖掘研究的热点问题。单遍扫描算法虽然满足数据流高速、数据规模较大和实时分析的需求,但因缺乏有效的聚类算法来识别和区分模式而限制了其有效性和可扩展性。为了解决以上问题,提出云环境下基于LSH的分布式数据流聚类算法DLCStream,通过引入Map-Reduce框架和位置敏感哈希机制,DLCStream算法能够快速找到数据流中的聚类模式。通过详细的理论分析和实验验证表明,与传统的数据流聚类框架CluStream算法相比,DLCStream算法在高效并行处理、可扩展性和聚类结果质量方面更有优势。 展开更多
关键词 数据流聚类 位置敏感哈希方法 Map-Reduce框架 DLCStream算法
在线阅读 下载PDF
基于E^2LSH-MKL的视觉语义概念检测 被引量:3
4
作者 张瑞杰 郭志刚 +1 位作者 李弼程 高毫林 《自动化学报》 EI CSCD 北大核心 2012年第10期1671-1678,共8页
多核学习方法(Multiple kernel learning,MKL)在视觉语义概念检测中有广泛应用,但传统多核学习大都采用线性平稳的核组合方式而无法准确刻画复杂的数据分布.本文将精确欧氏空间位置敏感哈希(Exact Euclidean locality sensitivehashing,... 多核学习方法(Multiple kernel learning,MKL)在视觉语义概念检测中有广泛应用,但传统多核学习大都采用线性平稳的核组合方式而无法准确刻画复杂的数据分布.本文将精确欧氏空间位置敏感哈希(Exact Euclidean locality sensitivehashing,E2LSH)算法用于聚类,结合非线性多核组合方法的优势,提出一种非线性非平稳的多核组合方法-E2LSH-MKL.该方法利用Hadamard内积实现对不同核函数的非线性加权,充分利用了不同核函数之间交互得到的信息;同时利用基于E2LSH哈希原理的聚类算法,先将原始图像数据集哈希聚类为若干图像子集,再根据不同核函数对各图像子集的相对贡献大小赋予各自不同的核权重,从而实现多核的非平稳加权以提高学习器性能;最后,把E2LSH-MKL应用于视觉语义概念检测.在Caltech-256和TRECVID2005数据集上的实验结果表明,新方法性能优于现有的几种多核学习方法. 展开更多
关键词 视觉语义概念 多核学习 精确欧氏空间位置敏感哈希算法 Hadamard内积
在线阅读 下载PDF
基于Multi-probe LSH的菊花花型相似性计算 被引量:2
5
作者 袁培森 翟肇裕 +1 位作者 钱淑韵 徐焕良 《农业机械学报》 EI CAS CSCD 北大核心 2019年第7期208-215,共8页
针对海量高维菊花图像相似性计算带来的挑战,研究了基于多探测局部位置敏感哈希技术的菊花表型相似性计算方法。针对菊花图像,采用SIFT技术提取菊花图像特征,并采用BoVW模型进行建模。由于图像特征的高维性质,海量的菊花表型相似性计算... 针对海量高维菊花图像相似性计算带来的挑战,研究了基于多探测局部位置敏感哈希技术的菊花表型相似性计算方法。针对菊花图像,采用SIFT技术提取菊花图像特征,并采用BoVW模型进行建模。由于图像特征的高维性质,海量的菊花表型相似性计算效率不高,为了提高计算效率,提出采用近似相似性技术中的多探测局部位置敏感哈希技术,用此方法构建菊花图像数据的哈希数据结构,在菊花相似性查询方面提高了计算效率,并确保了计算结果的质量。在菊花数据集上进行了计算效率和查询质量两方面的测试,并与典型的方法进行了试验对比和分析。结果表明,相比线性式扫描,平均查询成功概率达到0.90以上,平均加速比为3.3~19.8。本文方法能够在查询质量和计算效率两方面通过参数设置提供灵活的优化选择,并对参数的选择提供了参考范围,可为海量菊花花型相似性计算提供参考。 展开更多
关键词 菊花 花型 花型相似性 多探测 局部位置敏感哈希
在线阅读 下载PDF
实时红外图像拼接中的LSH快速配准算法 被引量:1
6
作者 王雨曦 亓洪兴 +1 位作者 葛明峰 舒嵘 《激光与红外》 CAS CSCD 北大核心 2015年第8期994-998,共5页
为了提高画幅式摆扫红外遥感图像拼接的实时性,将LSH(locality sensitive hash)算法应用于图像快速配准,比较了常用的基于Hamming距离、欧式距离和余弦距离的三种LSH方案的性能,实验结果表明,基于Hamming距离的LSH方法在红外图像配准中... 为了提高画幅式摆扫红外遥感图像拼接的实时性,将LSH(locality sensitive hash)算法应用于图像快速配准,比较了常用的基于Hamming距离、欧式距离和余弦距离的三种LSH方案的性能,实验结果表明,基于Hamming距离的LSH方法在红外图像配准中具有更好的实时性和准确性。通过对Hamming距离的LSH实现及改进,并利用遥感图像进行了图像配准的性能测试,构建了基于Hamming距离LSH算法的快速拼接系统。 展开更多
关键词 局部敏感哈希 汉明距离 余弦距离 欧氏距离 图像配准
在线阅读 下载PDF
基于弱监督E2LSH和显著图加权的目标分类方法 被引量:3
7
作者 赵永威 李弼程 柯圣财 《电子与信息学报》 EI CSCD 北大核心 2016年第1期38-46,共9页
在目标分类领域,当前主流的目标分类方法是基于视觉词典模型,而时间效率低、视觉单词同义性和歧义性及单词空间信息的缺失等问题严重制约了其分类性能。针对这些问题,该文提出一种基于弱监督的精确位置敏感哈希(E2LSH)和显著图加权的目... 在目标分类领域,当前主流的目标分类方法是基于视觉词典模型,而时间效率低、视觉单词同义性和歧义性及单词空间信息的缺失等问题严重制约了其分类性能。针对这些问题,该文提出一种基于弱监督的精确位置敏感哈希(E2LSH)和显著图加权的目标分类方法。首先,引入E2LSH算法对训练图像集的特征点聚类生成一组视觉词典,并提出一种弱监督策略对E2LSH中哈希函数的选取进行监督,以降低其随机性,提高视觉词典的区分性。然后,利用GBVS(Graph-Based Visual Saliency)显著度检测算法对图像进行显著度检测,并依据单词所处区域的显著度值为其分配权重;最后,利用显著图加权的视觉语言模型完成目标分类。在数据集Caltech-256和Pascal VOC2007上的实验结果表明,所提方法能够较好地提高词典生成效率,提高目标表达的分辨能力,其目标分类性能优于当前主流方法。 展开更多
关键词 目标分类 视觉词典模型 精确位置敏感哈希 视觉显著图 视觉语言模型
在线阅读 下载PDF
基于LSH方法的珊瑚礁鱼类竞争压力查询和资源分配方法 被引量:1
8
作者 赵丹枫 黄洲 +1 位作者 许强 黄冬梅 《热带海洋学报》 CAS CSCD 北大核心 2020年第2期118-126,共9页
基于海洋大数据查询技术的珊瑚礁鱼类保护策略是海洋科学研究的重要课题,其中鱼群竞争状况对鱼类保护具有重要意义。研究鱼群竞争状况就必须模型化鱼群与珊瑚礁的依赖关系。作为一个简单有效的大数据模型,图模型是表达这个关系的实用模... 基于海洋大数据查询技术的珊瑚礁鱼类保护策略是海洋科学研究的重要课题,其中鱼群竞争状况对鱼类保护具有重要意义。研究鱼群竞争状况就必须模型化鱼群与珊瑚礁的依赖关系。作为一个简单有效的大数据模型,图模型是表达这个关系的实用模型。文章提出表达珊瑚礁鱼类种群和珊瑚礁资源依赖关系的竞争图建模方法,并提出基于局部敏感哈希(Local Sensitive Hashing,LSH)的鱼类种群竞争压力竞争图查询方法,得到鱼类种群的实时竞争压力状况;然后根据LSH查询结果,分析出需要优先保护的鱼类种群;最后对这些需要优先保护的鱼类种群设计了基于构建人工礁的资源分配方法,使得区域内珊瑚礁鱼类总体竞争状况改善。 展开更多
关键词 珊瑚礁鱼群 竞争图 局部敏感哈希方法 资源分配 总体竞争状况
在线阅读 下载PDF
基于近邻参考集与E2LSH加速的姿态敏感器故障检测
9
作者 王婵 王慧泉 +1 位作者 金仲和 杜超禹 《传感技术学报》 CAS CSCD 北大核心 2017年第9期1359-1363,共5页
为满足高维、多状态姿控敏感器遥测数据的实时故障检测,提出了一种基于局部敏感哈希和子空间异常因子的故障检测算法。算法通过局部敏感哈希索引的建立和使用,检测全局故障点;通过子空间异常因子的计算,检测子空间故障点。提出了近似邻... 为满足高维、多状态姿控敏感器遥测数据的实时故障检测,提出了一种基于局部敏感哈希和子空间异常因子的故障检测算法。算法通过局部敏感哈希索引的建立和使用,检测全局故障点;通过子空间异常因子的计算,检测子空间故障点。提出了近似邻近参考集与缓存桶的概念,降低算法的时间复杂度。ZDPS-2卫星的姿控敏感器数据分析结果表明,该方法故障查准率89.3%,查全率100%,且泛化性能优于原始的子空间异常程度算法。该算法解决了原始的子空间异常程度算法实时性低、检测全局故障困难问题,可以满足姿控敏感器实时故障检测需求。 展开更多
关键词 姿态敏感器 故障检测 近邻参考集 局部敏感哈希
在线阅读 下载PDF
M2LSH:基于LSH的高维数据近似最近邻查找算法 被引量:5
10
作者 李灿 钱江波 +1 位作者 董一鸿 陈华辉 《电子学报》 EI CAS CSCD 北大核心 2017年第6期1431-1442,共12页
在许多应用中,LSH(Locality Sensitive Hashing)以及各种变体,是解决近似最近邻问题的有效算法之一.虽然这些算法能够很好地处理分布比较均匀的高维数据,但从设计方案来看,都没有针对数据分布不均匀的情况做相应的优化.针对这一问题,本... 在许多应用中,LSH(Locality Sensitive Hashing)以及各种变体,是解决近似最近邻问题的有效算法之一.虽然这些算法能够很好地处理分布比较均匀的高维数据,但从设计方案来看,都没有针对数据分布不均匀的情况做相应的优化.针对这一问题,本文提出了一种新的基于LSH的解决方案(M2LSH,2 Layers Merging LSH),对于数据分布不均匀的情况依然能得到一个比较好的查询效果.首先,将数据存放到具有计数功能的组合哈希向量表示的哈希桶中,然后通过二次哈希将这些桶号投影到一维空间,在此空间根据各个桶中存放的数据个数合并相邻哈希桶,使得新哈希桶中的数据量能够大致均衡.查询时仅访问有限个哈希桶,就能找到较优结果.本文给出了详细的理论分析,并通过实验验证了M2LSH的性能,不仅能减少访问时间,也可提高结果的正确率. 展开更多
关键词 近似最近邻 KNN查询 局部敏感哈希 高维数据
在线阅读 下载PDF
基于LSH的隐私保护POI推荐算法 被引量:4
11
作者 沈鑫娣 翟东君 +1 位作者 张得天 刘安 《计算机工程》 CAS CSCD 北大核心 2019年第1期96-102,共7页
基于位置的社交网络利用用户的签到数据进行兴趣点(POI)推荐,但是出于对数据隐私的考虑,各种社交平台之间不愿意直接共享数据。为综合各个社交平台的数据从而提供更好的POI推荐服务,提出一种基于局部敏感哈希(LSH)的隐私保护POI推荐算... 基于位置的社交网络利用用户的签到数据进行兴趣点(POI)推荐,但是出于对数据隐私的考虑,各种社交平台之间不愿意直接共享数据。为综合各个社交平台的数据从而提供更好的POI推荐服务,提出一种基于局部敏感哈希(LSH)的隐私保护POI推荐算法。通过LSH选取相似用户集合,极大地减少计算量,满足用户的快速响应需求。利用LSH和Paillier同态加密技术,在计算过程中保护数据隐私不被泄露。真实数据集上的实验结果表明,在响应时间和预测准确度上,该算法优于传统基于用户的协同过滤推荐算法。 展开更多
关键词 局部敏感哈希 隐私保护 推荐算法 兴趣点 同态加密
在线阅读 下载PDF
一种基于LSH的时间子序列匹配查询算法 被引量:1
12
作者 刘根平 陈叶芳 +1 位作者 杜呈透 钱江波 《电信科学》 北大核心 2015年第8期63-71,共9页
提出了一种基于LSH(locality sensitive hashing,局部敏感散列)算法处理时间子序列匹配问题的方法LSHSM。不同于FRM和Dual Match方法 ,该方法不需要对时间序列做DFT、DWT等特征变换,而是直接把序列看成高维数据点,利用LSH能处理高维数... 提出了一种基于LSH(locality sensitive hashing,局部敏感散列)算法处理时间子序列匹配问题的方法LSHSM。不同于FRM和Dual Match方法 ,该方法不需要对时间序列做DFT、DWT等特征变换,而是直接把序列看成高维数据点,利用LSH能处理高维数据的特性来查找相似时间子序列。实验采用3种不同的时间序列数据集,通过与线性扫描算法比较,验证了算法的有效性,性能有很大的提高。 展开更多
关键词 时间子序列 lsh 匹配查询
在线阅读 下载PDF
一种基于LSH面向二元混合类型数据的相似性查询方法 被引量:5
13
作者 朱命冬 申德荣 +2 位作者 寇月 聂铁铮 于戈 《计算机学报》 EI CSCD 北大核心 2018年第8期1827-1843,共17页
局部敏感哈希方法(LSH)已经被广泛用于高维数据和大规模数据集的最近邻查询,然而现有方法大多将LSH方法用于单一类型的数据,文中尝试将LSH方法用于二元混合类型数据,如图像-文本数据,空间-文本数据等.文中提出了一种基于LSH混合索引结... 局部敏感哈希方法(LSH)已经被广泛用于高维数据和大规模数据集的最近邻查询,然而现有方法大多将LSH方法用于单一类型的数据,文中尝试将LSH方法用于二元混合类型数据,如图像-文本数据,空间-文本数据等.文中提出了一种基于LSH混合索引结构的相似性查询方法,该方法可有效地管理含两种数据类型的数据,并且融合两种数据类型的相似性进行最近邻查询.文中提出的查询方法主要有三个特点:首先,结合LSH方法为混合数据构建混合哈希值,该混合哈希值保留有数据对象之间内容相似性的信息,基于混合哈希值构建哈希索引,进行快速准确的最近邻查询;其次,该方法解决传统LSH方法固定敏感半径的问题,可以有效地处理可变查询范围的相似性查询;最后,该方法在分布式环境中不需要全局索引信息,保证分布式查询的伸缩性.文中通过理论分析证明了查询方法和查询算法的准确性和有效性,进一步通过分布式系统优化及基于真实数据和合成数据的大量实验验证了方法的伸缩性和高效性. 展开更多
关键词 二元混合数据 相似性查询 局部敏感哈希 分布式查询算法 最近邻查询
在线阅读 下载PDF
基于LSH的shapelets转换方法 被引量:1
14
作者 丁智慧 乔钢柱 +1 位作者 程谭 宿荣 《计算机工程与应用》 CSCD 北大核心 2021年第3期112-119,共8页
针对基于shapelets转换的时间序列分类算法因shapelets候选集中存在大量相似序列而造成耗时过长的问题,提出了一种基于LSH的shapelets转换方法(Locality Sensitive Hashing Shapelets Transform,LSHST),提出一种局部敏感哈希函数(LSH)... 针对基于shapelets转换的时间序列分类算法因shapelets候选集中存在大量相似序列而造成耗时过长的问题,提出了一种基于LSH的shapelets转换方法(Locality Sensitive Hashing Shapelets Transform,LSHST),提出一种局部敏感哈希函数(LSH)的改进算法,对原始子序列候选集进行逐级过滤筛选,快速挑选出形态上具有代表性的shapelets集合,计算集合中shapelets的质量,采用覆盖的方法确定将要进行转换的shapelets,进一步减小shapelets的数量,进行shapelets转换。实验表明,与Shapelet Transform(ST)、ClusterShapelets(CST)和Fast Shapelet Selection(FSS)算法相比,LSHST在分类精度上最高提升了20.05、19.9和16.52个百分点,在时间节省程度上最高达8000倍、16000倍和8.5倍。 展开更多
关键词 时间序列分类 shapelets转换 局部敏感哈希
在线阅读 下载PDF
AKNN-Qalsh:PostgreSQL系统高维空间近似最近邻检索插件 被引量:2
15
作者 张楚涵 张家侨 冯剑琳 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第3期79-85,共7页
复杂数据对象(如图片、文本)通常被表示成高维特征向量。PostgreSQL系统现有的最近邻检索方法KNN-Gist基于树状索引实现,无法高效支持高维数据的最近邻检索。引入的PostgreSQL系统高维空间近似最近邻检索插件:AKNN-Qalsh,基于位置敏感... 复杂数据对象(如图片、文本)通常被表示成高维特征向量。PostgreSQL系统现有的最近邻检索方法KNN-Gist基于树状索引实现,无法高效支持高维数据的最近邻检索。引入的PostgreSQL系统高维空间近似最近邻检索插件:AKNN-Qalsh,基于位置敏感哈希机制实现,支持大规模、高维数据对象的近似最近邻检索。通过在五个真实数据集上的密集实验,验证了该插件的有效性。 展开更多
关键词 高维数据 特征向量 最近邻检索 位置敏感哈希 PostgreSQL插件
在线阅读 下载PDF
面向Top-k快速查询的层次化LSH索引方法
16
作者 罗雄才 高军 《计算机研究与发展》 EI CSCD 北大核心 2015年第S1期56-63,共8页
局部敏感哈希(locality sensitive hashing,LSH)用于在海量高维数据中检索相似的数据项,它能高效地返回相似度大于用户给定阈值的数据对.但是,由于需要设置固定阈值,LSH无法直接处理Top-k相似查询.传统LSH索引算法需要设置一系列阈值,... 局部敏感哈希(locality sensitive hashing,LSH)用于在海量高维数据中检索相似的数据项,它能高效地返回相似度大于用户给定阈值的数据对.但是,由于需要设置固定阈值,LSH无法直接处理Top-k相似查询.传统LSH索引算法需要设置一系列阈值,分别建立索引,时间和空间代价较大.提出了一种层次化的LSH索引算法,通过动态构建层次化相似度图,充分利用三角不等式,减少不必要的索引构建代价.具体来讲,首先通过高阈值构建相似度图,将高度相似的数据点抽象成"超点",再在"超点"上构建低阈值的相似度图.查询时,首先查询高阈值相似度图;数量不足时再查询低阈值相似度图.实验表明,相比传统LSH算法,本文方法在构建索引的时间和空间代价上减小一个数量级,查询更加高效. 展开更多
关键词 层次化局部敏感哈希 Minhash TOP-K查询 相似度图 三角不等式
在线阅读 下载PDF
LSHBMRPK-means算法及其应用 被引量:1
17
作者 罗俊 李劲华 《计算机工程与应用》 CSCD 北大核心 2017年第21期62-67,共6页
针对传统的k-means聚类算法在处理大数据时算法时间复杂度极高和聚类效果不佳的问题,提出了LSHBMRPK-means算法,即基于局部敏感哈希函数的Map Reduce并行化的k-means聚类算法;针对推荐系统的可扩展性问题,将LSHBMRPK-means应用于基于聚... 针对传统的k-means聚类算法在处理大数据时算法时间复杂度极高和聚类效果不佳的问题,提出了LSHBMRPK-means算法,即基于局部敏感哈希函数的Map Reduce并行化的k-means聚类算法;针对推荐系统的可扩展性问题,将LSHBMRPK-means应用于基于聚类的协同过滤算法。此外,针对评分数据的稀疏性问题,使用LFM,即隐语义模型,对缺失值进行填充,进而提出了基于LFM的LSHBMRPK-means聚类算法。实验结果表明,LSHBMRPK-means聚类算法提高了聚类效率和质量,基于LFM的LSHBMRPK-means协同过滤算法具有较好的可扩展性,同时解决了因评分数据稀疏导致聚类质量不好的问题。 展开更多
关键词 大数据 K-MEANS 局部敏感哈希函数 MAP REDUCE 推荐算法
在线阅读 下载PDF
基于兴趣相似度传递的增强LSH统计预测算法 被引量:1
18
作者 夏小娜 邹麒 《计算机应用与软件》 北大核心 2020年第3期286-291,共6页
随着在线用户和物品数量的不断增长,有必要通过追踪和筛选历史数据,为用户提供机制可参考的决策建议。构建统计预测算法是实现启发式预测用户兴趣的有效机制。因此,在充分利用用户自身历史偏好和潜在偏好的前提下,提出兴趣相似度传递思... 随着在线用户和物品数量的不断增长,有必要通过追踪和筛选历史数据,为用户提供机制可参考的决策建议。构建统计预测算法是实现启发式预测用户兴趣的有效机制。因此,在充分利用用户自身历史偏好和潜在偏好的前提下,提出兴趣相似度传递思想,分析用户的社交关联强度,计算用户的邻近社交兴趣和选择趋向特征,设计并实现了可扩展的局部敏感哈希(Improved Local Sensitivity Hashing,ILSH)统计预测算法。实验表明,该算法在有利于相似度计算量剧增的背景下,在提高兴趣预测的准确性和可靠性方面优于其他近似算法。 展开更多
关键词 个性化预测 增强局部敏感哈希 兴趣相似度传递 潜在偏好 协同过滤 统计预测算法
在线阅读 下载PDF
图采样泛化行人重识别算法
19
作者 闵锋 毛一新 +3 位作者 况永刚 彭伟明 郝琳琳 吴波 《计算机工程与应用》 CSCD 北大核心 2024年第14期219-227,共9页
最近的研究表明,度量学习中的深度特征匹配方法,结合大规模、多样化的训练数据,可以显著增强人员再识别的泛化能力。然而,许多现有的方法会产生大量的内存和计算成本,如分类参数或类记忆学习等。为解决上述问题,提出了一种新的基于相关... 最近的研究表明,度量学习中的深度特征匹配方法,结合大规模、多样化的训练数据,可以显著增强人员再识别的泛化能力。然而,许多现有的方法会产生大量的内存和计算成本,如分类参数或类记忆学习等。为解决上述问题,提出了一种新的基于相关性图采样(correlation graph sampler,CGS)的泛化行人重识别算法,CGS的基本思想是在训练开始时使用局部敏感哈希函数(locality-sensitive Hashing,LSH)和特征度量为所有类构造最近邻关系图。这确保了每一小批训练样本由随机选择的基类和与基类具有相似性的近邻类组成,以提供信息量大且具有挑战性的学习示例,提高行人重识别模型的判别性学习能力。CGS的采样原理会受主干网提取的特征质量影响,因此CGS采样能力会随着主干网的训练而增强,具有可学习性。通过在大规模数据集(包括CUHK03、Market-1501和MSMT17)上交叉评估该方法,广泛的实验结果证实了该方法的有效性,并展示了其在行人重识别应用中的潜力。 展开更多
关键词 行人重识别 度量学习 相关性图采样 局部敏感哈希函数
在线阅读 下载PDF
中文词义密文模糊搜索算法研究
20
作者 张志红 付钰 付伟 《海军工程大学学报》 CAS 北大核心 2024年第6期38-45,共8页
为解决云存储中密文数据的语义模糊搜索问题,设计了一种面向中文词义的云存储密文模糊搜索算法。利用Word2vec轻量级神经网络将词语转化为结构化向量,并进行语汇的相似度衡量,扩展关键词的中文近义词集;以布隆过滤器为基础,利用位置敏... 为解决云存储中密文数据的语义模糊搜索问题,设计了一种面向中文词义的云存储密文模糊搜索算法。利用Word2vec轻量级神经网络将词语转化为结构化向量,并进行语汇的相似度衡量,扩展关键词的中文近义词集;以布隆过滤器为基础,利用位置敏感哈希函数构造文件索引与搜索陷门,实现对关键词的安全存储和对多关键词的检索支持;在位置敏感哈希函数映射后再结合文件ID计算二轮哈希值进行混淆,并在文件加密过程中引入MD5值,实现了文件完整性验证。理论分析和仿真实验证明:所设计的密文模糊搜索算法能够实现基于中文词义的多关键词密文模糊搜索。 展开更多
关键词 密文检索 布隆过滤器 位置敏感哈希函数 Word2vec 语义相似度
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部