This study designs four types of liquid-filled cylindrical shell structures to investigate their protection characteristics against explosive shock waves and high-speed fragments.Bare charge and charge-driven prefabri...This study designs four types of liquid-filled cylindrical shell structures to investigate their protection characteristics against explosive shock waves and high-speed fragments.Bare charge and charge-driven prefabricated fragments are employed to examine the damage under blast shock waves and combined blast and fragments loading on various liquid-filled cylindrical shell structures.The test results are compared to numerical calculations and theoretical analysis for the structure's deformation,the liquid medium's movement,and the pressure waves'propagation characteristics under different liquid-filling methods.The results showed that the filling method influences the blast protection and the struc-ture's energy absorption performance.The external filling method reduces the structural deformation,and the internal filling method increases the damage effect.The gapped internal filling method improves the structure's energy absorption efficiency.The pressure wave loading on the liquid-filled cylindrical shell structure differs depending on filling methods.Explosive shock waves and high-speed fragments show a damage enhancement effect on the liquid-filled cylindrical shell structure,depending on the thickness of the internal liquid container layer.The specific impulse on the inner surface of the cylindrical shell positively correlates to the radial deformation of the cylindrical shell structure,and the external liquid layer limits the radial structural deformation.展开更多
Polymethacrylimide(PMI)foam has the highest specific stiffness and strength among polymer foams,with excellent radar-absorbing capabilities,which provide it with broad prospects in underwater ap-plications.To evaluate...Polymethacrylimide(PMI)foam has the highest specific stiffness and strength among polymer foams,with excellent radar-absorbing capabilities,which provide it with broad prospects in underwater ap-plications.To evaluate the impact resistance of PMI foam sandwich structures,the dynamic response and energy absorption characteristics of PMI foam sandwich structures with different core layers under various water impact loads were investigated using combined experimental and numerical methods.A fluid-structure interaction device with a diffusion angle was used for water impact testing of the PMI foam sandwich structures.The 3D-DIC technique was employed to process the deformation images of the sandwich-structure back panel captured by the high-speed cameras.Numerical simulations were performed to analyze the dynamic deformation process of the PMI foam core.The results indicated that the maximum deformation of the back panel exhibited a nonlinear relationship with the impulse.Below the critical impulse,the maximum deformation of the back panel plateaued,which was determined by the core density.Beyond the critical impulse,the rate of deformation increased with the impulse was governed by the core thickness.Compared with different sandwich panels,PMI foam sandwich struc-tures demonstrate significant advantages in terms of impact resistance under high-impulse conditions.展开更多
The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compr...The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compression.While previous studies focused on the angleβbetween the maximum principal stress and the structural plane,the role of angleω,between the intermediate principal stress and the structural plane,is often overlooked.Utilizing artificially prefabricated granite specimens with a single non-penetrating structural plane,we set the loading angleβto range from 0°to 90°across seven groups,and assignedωvalues of 0°and 90°in two separate groups.The results show that the peak strength is negatively correlated withβup to 45°,beyond which it tends to stabilize.The angleωexerts a strengthening effect on the peak strength.Deformation mainly occurs post-peak,with the strain values ε_(1) and ε_(3) reaching levels 2−3 times higher than those in intact rock.The structural plane significantly influences failure mode whenω=0°,while failure localizes near the σ_(3) surface of the specimens whenω=90°.The findings enhance data on structural plane rocks under triaxial compression and inform theoretical research,excavation,and support design of rock structures.展开更多
A hull structure is prone to local deformation and damage due to the pressure load on the surface.How to simulate surface pressure is an important issue in ship structure test.The loading mode of hydraulic actuator co...A hull structure is prone to local deformation and damage due to the pressure load on the surface.How to simulate surface pressure is an important issue in ship structure test.The loading mode of hydraulic actuator combined with high-pressure flexible bladder was proposed,and the numerical model of the loading device based on flexible bladder was established.The design and analysis method of high-pressure flexible bladder based on aramid-fiber reinforced thermoplastic polyurethane was proposed to break through the surface pressure loading technology of ship structures.The surface pressure loading system based on flexible bladder was developed.The ultimate strength verification test of the box girder under the combined action of bending moment and pressure was carried out to systematically verify the feasibility and applicability of the loading system.The results show that the surface pressure loading technology can be used well for applying uniform pressure to ship structures.Compared with the traditional surface loading methods,the improved device can be applied with horizontal constant pressure load,with rapid response and safe process,and the pressure load is always stable with the increase of the bending moment load during the test.The requirement for uniform loading in the comprehensive strength test of large structural models is satisfied and the accuracy of the test results is improved by this system.展开更多
By combination of the transient Raman spectroscopic measurement and the density functional theoretical calculations,the structural evolution and stability of TATB under shock compression was investigated.Due to the im...By combination of the transient Raman spectroscopic measurement and the density functional theoretical calculations,the structural evolution and stability of TATB under shock compression was investigated.Due to the improvement in synchronization control between two-stage light gas gun and the transient Raman spectra acquisition,as well as the sample preparation,the Raman peak of the N-O mode of TATB was firstly observed under shock pressure up to 13.6 GPa,noticeably higher than the upper limit of 8.5 GPa reported in available literatures.By taking into account of the continuous shift of the main peak and other observed Raman peaks,we did not distinguish any structural transition or any new species.Moreover,both the present Raman spectra and the time-resolved radiation of TATB during shock loading showed that TATB exhibits higher chemical stability than previous declaration.To reveal the detailed structural response and evolution of TATB under compression,the density functional theoretical calculations were conducted,and it was found that the pressure make N-O bond lengths shorter,nitro bond angles larger,and intermolecular and intra-molecular hydrogen bond interactions enhanced.The observed red shift of Raman peak was ascribed to the abnormal enhancement of H-bound effect on the scissor vibration mode of the nitro group.展开更多
In this paper,the failure caused by HRAM loads which were generated by high-speed projectile penetration,and protection technology of the fluid-filled structure were explored.A bubble was preset on the projectile traj...In this paper,the failure caused by HRAM loads which were generated by high-speed projectile penetration,and protection technology of the fluid-filled structure were explored.A bubble was preset on the projectile trajectory in a fluid-filled structure.Based on the reflection and transmission phenomena of pressure waves at the gas-liquid interface and the compressibility characteristics of gases,a numerical analysis was conducted on the influence of preset bubble on projectile penetration and structural failure characteristics.The results indicate that the secondary water-entry impact phenomenon occurs when a preset bubble exists on the projectile trajectory,leading to the secondary water entry impact loads.The rarefaction waves reflected on the surface of the preset bubble cause the attenuation ratio of the initial impact pressure peak to reach 68.8%and the total specific impulse attenuation ratio to reach 48.6%.Furthermore,the larger the bubble,the faster the projectile,and the more obvious the attenuation effect.Moreover,due to the compressibility of the bubble,the global deformation attenuation ratio of the front and rear walls can reach over 80%.However,the larger the bubble size,the faster the projectile velocity,the smaller the local deformation attenuation effect of the rear wall,and the more severe the failure at the perforation of the rear wall.展开更多
The compression and energy absorption properties of foam geopolymers increase stress wave attenuation under explosion impacts,reducing the vibration effect on the structure.Explosion tests were conducted using several...The compression and energy absorption properties of foam geopolymers increase stress wave attenuation under explosion impacts,reducing the vibration effect on the structure.Explosion tests were conducted using several composite structure models,including a concrete lining structure(CLS)without foam geopolymer and six foam geopolymer composite structures(FGCS)with different backfill parameters,to study the dynamic response and wave dissipation mechanisms of FGCS under explosive loading.Pressure,strain,and vibration responses at different locations were synchronously tested.The damage modes and dynamic responses of different models were compared,and how wave elimination and energy absorption efficiencies were affected by foam geopolymer backfill parameters was analyzed.The results showed that the foam geopolymer absorbed and dissipated the impact energy through continuous compressive deformation under high strain rates and dynamic loading,reducing the strain in the liner structure by 52%and increasing the pressure attenuation rate by 28%.Additionally,the foam geopolymer backfill reduced structural vibration and liner deformation,with the FGCS structure showing 35%less displacement and 70%less acceleration compared to the CLS.The FGCS model with thicker,less dense foam geopolymer backfill,having more pores and higher porosity,demonstrated better compression and energy absorption under dynamic impact,increasing stress wave attenuation efficiency.By analyzing the stress wave propagation and the compression characteristics of the porous medium,it was concluded that the stress transfer ratio of FGCS-ρ-579 was 77%lower than that of CLS,and the transmitted wave energy was 90%lower.The results of this study provide a scientific basis for optimizing underground composite structure interlayer parameters.展开更多
Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to...Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to miniaturization of electronic components,it is challenging to directly measure or numerically predict the mechanical response of small-sized critical interconnections in board-level packaging structures to ensure the mechanical reliability of electronic devices in projectiles under harsh working conditions.To address this issue,an indirect measurement method using the Bayesian regularization-based load identification was proposed in this study based on finite element(FE)pre-dictions to estimate the load applied on critical interconnections of board-level packaging structures during the process of projectile penetration.For predicting the high-strain-rate penetration process,an FE model was established with elasto-plastic constitutive models of the representative packaging ma-terials(that is,solder material and epoxy molding compound)in which material constitutive parameters were calibrated against the experimental results by using the split-Hopkinson pressure bar.As the impact-induced dynamic bending of the printed circuit board resulted in an alternating tensile-compressive loading on the solder joints during penetration,the corner solder joints in the edge re-gions experience the highest S11 and strain,making them more prone to failure.Based on FE predictions at different structural scales,an improved Bayesian method based on augmented Tikhonov regulariza-tion was theoretically proposed to address the issues of ill-posed matrix inversion and noise sensitivity in the load identification at the critical solder joints.By incorporating a wavelet thresholding technique,the method resolves the problem of poor load identification accuracy at high noise levels.The proposed method achieves satisfactorily small relative errors and high correlation coefficients in identifying the mechanical response of local interconnections in board-level packaging structures,while significantly balancing the smoothness of response curves with the accuracy of peak identification.At medium and low noise levels,the relative error is less than 6%,while it is less than 10%at high noise levels.The proposed method provides an effective indirect approach for the boundary conditions of localized solder joints during the projectile penetration process,and its philosophy can be readily extended to other scenarios of multiscale analysis for highly nonlinear materials and structures under extreme loading conditions.展开更多
Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in...Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in the impact load mitigation where an external kinetic energy is absorbed by the deformation/crushing of lattice cells.This has motivated a growing number of experimental and numerical studies,recently,on the crushing behavior of additively produced lattice structures.The present study overviews the dynamic and quasi-static crushing behavior of additively produced Ti64,316L,and AlSiMg alloy lattice structures.The first part of the study summarizes the main features of two most commonly used additive processing techniques for lattice structures,namely selective-laser-melt(SLM)and electro-beam-melt(EBM),along with a description of commonly observed process induced defects.In the second part,the deformation and strain rate sensitivities of the selected alloy lattices are outlined together with the most widely used dynamic test methods,followed by a part on the observed micro-structures of the SLM and EBM-processed Ti64,316L and AlSiMg alloys.Finally,the experimental and numerical studies on the quasi-static and dynamic compression behavior of the additively processed Ti64,316L,and AlSiMg alloy lattices are reviewed.The results of the experimental and numerical studies of the dynamic properties of various types of lattices,including graded,non-uniform strut size,hollow,non-uniform cell size,and bio-inspired,were tabulated together with the used dynamic testing methods.The dynamic tests have been noted to be mostly conducted in compression Split Hopkinson Pressure Bar(SHPB)or Taylor-and direct-impact tests using the SHPB set-up,in all of which relatively small-size test specimens were tested.The test specimen size effect on the compression behavior of the lattices was further emphasized.It has also been shown that the lattices of Ti64 and AlSiMg alloys are relatively brittle as compared with the lattices of 316L alloy.Finally,the challenges associated with modelling lattice structures were explained and the micro tension tests and multi-scale modeling techniques combining microstructural characteristics with macroscopic lattice dynamics were recommended to improve the accuracy of the numerical simulations of the dynamic compression deformations of metallic lattice structures.展开更多
Projectiles made of reactive structure materials(RSM)can damage the target with not only kinetic but also chemical energy,but the enhanced damage potential of RSM may become compromised if extreme loading condition di...Projectiles made of reactive structure materials(RSM)can damage the target with not only kinetic but also chemical energy,but the enhanced damage potential of RSM may become compromised if extreme loading condition disintegrates the projectile before the target is reached.In this work,a ductile coating of Ni was introduced to a tungsten-zirconium(W-Zr)alloy,a typical brittle RSM,to preserve the damage potential of the projectile.Detonation driving tests were carried out with X-ray photography and gunpowder deflagration driving tests were carried out with high-speed photography for the coated and uncoated RSM samples,respectively.The craters on the witness target were analyzed by scanning electron microscopy and X-ray diffraction.The Ni coating was found to effectively preserve the damage potential of the W-Zr alloy under extreme loading conditions,whereas the uncoated sample fractured and ignited before impacting the target in both detonation and deflagration driving.The crack propagation between the reactively brittle core and the ductile coating was analyzed based on the crack arrest theory to mechanistically demonstrate how the coating improves the structural integrity and preserves the damage potential of the projectile.Specifically,the Ni coating envelops theW-Zr core until the coated sphere penetrates the target,and the coating is then eroded and worn to release the reactive core for the projectile to damage the target more intensively.展开更多
Reinforced concrete(RC) load bearing wall is widely used in high-rise and mid-rise buildings. Due to the number of walls in plan and reduction in lateral force portion, this system is not only stronger against earthqu...Reinforced concrete(RC) load bearing wall is widely used in high-rise and mid-rise buildings. Due to the number of walls in plan and reduction in lateral force portion, this system is not only stronger against earthquakes, but also more economical. The effect of progressive collapse caused by removal of load bearing elements, in various positions in plan and stories of the RC load bearing wall system was evaluated by nonlinear dynamic and static analyses. For this purpose, three-dimensional model of 10-story structure was selected. The analysis results indicated stability, strength and stiffness of the RC load-bearing wall system against progressive collapse. It was observed that the most critical condition for removal of load bearing walls was the instantaneous removal of the surrounding walls located at the corners of the building where the sections of the load bearing elements were changed. In this case, the maximum vertical displacement was limited to 6.3 mm and the structure failed after applying the load of 10 times the axial load bored by removed elements. Comparison between the results of the nonlinear dynamic and static analyses demonstrated that the "load factor" parameter was a reasonable criterion to evaluate the progressive collapse potential of the structure.展开更多
Dome structures have been used extensively for industrial,residential,and military infrastructure.Therefore,it is necessary to understand the damage risk potential for such structures for blast-resistant design consid...Dome structures have been used extensively for industrial,residential,and military infrastructure.Therefore,it is necessary to understand the damage risk potential for such structures for blast-resistant design considerations.This paper investigates the effect of blast load variability on the design value and the structural dynamic response.Therefore,the sources of uncertainty in the external blast load on dome structures were discussed firstly.Then based on the probabilistic blast load model for the dome,the rationality of a deterministic mass-increase safety method was assessed.It was found that previous deterministic design method cannot provide a consistent and sound assurance factor or reliability index on the entire dome roof.In addition,it was also proved that the assurance-based load method fails to ensure compliance with structural safety design standards on the dome roof when compared with the reliability-based blast method.A sensitivity analysis on the probabilistic blast load was conducted,and the results indicate that stand-off distance and explosive mass both act as dominant sources to influence the mean and variability of blast load.Therefore,based on the Latin hypercube sampling method,a reliability-based external blast load factor technique was proposed.This technique was further used to estimate structural damage levels of a single-layer reticulated dome under different reliability requirements,associated with a low,medium,and high level of protection grades for a specific explosion scenario,and it indicated that this technique can be useful in the building design to achieve a higher structural anti-explosion capacity.This study herein can serve as a reference for the calculation method of designed blast load.展开更多
The structural response of a single-layer reticulated dome to external explosions is shaped by many variables,and the associated uncertainties imply non-deterministic results.Existing deterministic methods for predict...The structural response of a single-layer reticulated dome to external explosions is shaped by many variables,and the associated uncertainties imply non-deterministic results.Existing deterministic methods for predicting the consequences of specific explosions do not account for these uncertainties.Therefore,the impact of the uncertainties associated with these input variables on the structures’response needs to be studied and quantified.In this study,a parametric uncertainty analysis was conducted first.Then,local and global sensitivity analyses were carried out to identify the drivers of the structural dynamic response.A probabilistic structural response model was established based on sensitive variables and a reasonable sample size.Furthermore,some deterministic empirical methods for explosion-resistance design,including the plane blast load model of CONWEP,the curved blast load model under the 50%assurance level,and the 20%mass-increased method,were used for evaluating their reliability.The results of the analyses revealed that the structural response of a single-layer reticulated dome to an external blast loading is lognormally distributed.Evidently,the MB0.5 method based on the curved reflector load model yielded results with a relatively stable assurance rate and reliability,but CONWEP did not;thus,the 1.2MB0.5 method can be used for making high-confidence simple predictions.In addition,the results indicated that the structural response is very sensitive to the explosion parameters.Based on these results,it is suggested that for explosion proofing,setting up a defensive barrier is more effective than structural strengthening.展开更多
This paper calculated load-carrying of isogrid and orthogrid of carbon-epoxy composite trellis wound structure(C/E CTWS) using non-linear finite element method.Based on the analysis,test cases were designed and tests ...This paper calculated load-carrying of isogrid and orthogrid of carbon-epoxy composite trellis wound structure(C/E CTWS) using non-linear finite element method.Based on the analysis,test cases were designed and tests of axial compression were carried.Analysis result and test result fit well.In order to be used in the project,this kind of structure cut-out repairing was calculated.The method presented in this paper has been proved and can be used to solve complicated engineering problems.According to calculations and experimental results combined with application,a principle of choosing wound structure is obtained and principle could be applied to engineering.展开更多
Single-layer reticulated dome structure are commonly high-profile building in the public and can be attractive targets for terrorist bombings,so the public can benefit from enhanced safety with a stronger understandin...Single-layer reticulated dome structure are commonly high-profile building in the public and can be attractive targets for terrorist bombings,so the public can benefit from enhanced safety with a stronger understanding of the behavior of single-layer reticulated dome structure under explosion.This paper investigates the fluid-structure interaction process and the dynamic response performance of the singlelayer reticulated dome under external blast load.Both experimental and numerical results shown that structural deformation is remarkably delayed compared with the velocity of blast wave,which advises the dynamic response of large-span reticulated dome structure has a negligible effect on the blast wave propagation under explosion.Four failure modes are identified by comparing the plastic development of each ring and the residual spatial geometric of the structure,i.e.,minor vibration,local depression,severe damage,and overall collapse.The plastic deformation energy and the displacement potential energy of the structure are the main consumers of the blast energy.In addition,the stress performance of the vertex member and the deep plastic ratio of the whole structure can serve as qualitative indicators to distinguish different failure modes.展开更多
Pile-slab structure roadbed is a new form of ballastless track for high speed railway. Due to lack of corresponding design code, based on the analysis of its structure characteristics and application requirements, it ...Pile-slab structure roadbed is a new form of ballastless track for high speed railway. Due to lack of corresponding design code, based on the analysis of its structure characteristics and application requirements, it is proposed to carry out load effect combination according to ultimate limit state and serviceability limit state, and the most unfavorable combination of each state is chosen to carry through design calculation for pile-slab structure. Space model of pile-slab structure can be simplified as a plane flame model, by using the orthogonal test method, and the design parameter of pile-slab structure is optimized. Moreover, based on the engineering background of Suining-Chongqing high-speed railway, the dynamic deformation characteristics of pile-slab structure roadbed are further researched by carrying on the indoor dynamic model test. The test results show that the settlement after construction of subgrade satisfies the requirement of settlement control to build ballastless track on soil subgrade for high-speed railway. Slab structure plays the role of arch shell as load is transmitted from slab to pile, and the vertical dynamic stress of subgrade soil is approximately of "K" form distribution with the depth. The distribution of pile stress is closely related to soil characteristics, which has an upset triangle shape where the large dynamic stress is at the top. Pile compared with soil shares most dynamic stress. Pile structure expands the depth of the dynamic response of subgrade has limited effect on dynamic response. These results can provide subgrade. and improves the stress of subgrade soil, and the speed of train scientific basis for pile-slab structure roadbed used on soil展开更多
High-speed impact threats and terrorist actions on the battlefield require the development of more effective protective materials and structures,and various protective structure is designed according their energy-abso...High-speed impact threats and terrorist actions on the battlefield require the development of more effective protective materials and structures,and various protective structure is designed according their energy-absorbing characteristics.In this research,the deformation behavior,microscopic failure modes and energy absorption characteristics of re-entrant hexagonal structure,regular hexagonal structure and regular quadrilateral structure are studied under different strain rates impact.The re-entrant hexagonal structure forms a“X”-shaped deformation zone,the regular quadrilateral and regular hexagonal structure form an“I”-shaped deformation zone.The microscopic appearance of the section is a mixed fracture form.The effects of the topological shape,cell angle,and cell height on the impact behavior of the structure were evaluated.When the cell height is fixed and the cell angle is changed,the energy absorption of the structure increase and then decrease as the relative density increase.The mechanical properties of the structure are optimal when the relative density is about 18.6%and the cell angle is22.5°.When the cell angle is fixed and the cell height is changed,as the relative density increases,the energy absorption of the structure gradually increases.The regular quadrilateral structure and the reentrant hexagonal structure experienced clear strain rate effects under dynamic impact conditions;the regular hexagonal structure did not exhibit obvious strain rate effects.The results presented herein provide a basis for further rational design and selection of shock-resistant protective structures that perform well in high-speed impact environments.展开更多
Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties...Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures.展开更多
Optimization of structural parameters aimed at improving the load carrying capacity of spatial flexible redundant manipulators is presented in this paper. In order to increase the ratio of load to mass of robots, the ...Optimization of structural parameters aimed at improving the load carrying capacity of spatial flexible redundant manipulators is presented in this paper. In order to increase the ratio of load to mass of robots, the cross-sectional parameters and constructional parameters are optimized respectively. The cross-sectional and configurational parameters are optimized simultaneously. The numerical simulation of a 4R spatial manipulator is performed. The results show that the load capacity of robots has been greatly improved through the optimization strategies proposed in this paper.展开更多
基金the National Natural Science Foundation of China(Grant Nos.52371342,52271338,52101378 and 51979277)。
文摘This study designs four types of liquid-filled cylindrical shell structures to investigate their protection characteristics against explosive shock waves and high-speed fragments.Bare charge and charge-driven prefabricated fragments are employed to examine the damage under blast shock waves and combined blast and fragments loading on various liquid-filled cylindrical shell structures.The test results are compared to numerical calculations and theoretical analysis for the structure's deformation,the liquid medium's movement,and the pressure waves'propagation characteristics under different liquid-filling methods.The results showed that the filling method influences the blast protection and the struc-ture's energy absorption performance.The external filling method reduces the structural deformation,and the internal filling method increases the damage effect.The gapped internal filling method improves the structure's energy absorption efficiency.The pressure wave loading on the liquid-filled cylindrical shell structure differs depending on filling methods.Explosive shock waves and high-speed fragments show a damage enhancement effect on the liquid-filled cylindrical shell structure,depending on the thickness of the internal liquid container layer.The specific impulse on the inner surface of the cylindrical shell positively correlates to the radial deformation of the cylindrical shell structure,and the external liquid layer limits the radial structural deformation.
文摘Polymethacrylimide(PMI)foam has the highest specific stiffness and strength among polymer foams,with excellent radar-absorbing capabilities,which provide it with broad prospects in underwater ap-plications.To evaluate the impact resistance of PMI foam sandwich structures,the dynamic response and energy absorption characteristics of PMI foam sandwich structures with different core layers under various water impact loads were investigated using combined experimental and numerical methods.A fluid-structure interaction device with a diffusion angle was used for water impact testing of the PMI foam sandwich structures.The 3D-DIC technique was employed to process the deformation images of the sandwich-structure back panel captured by the high-speed cameras.Numerical simulations were performed to analyze the dynamic deformation process of the PMI foam core.The results indicated that the maximum deformation of the back panel exhibited a nonlinear relationship with the impulse.Below the critical impulse,the maximum deformation of the back panel plateaued,which was determined by the core density.Beyond the critical impulse,the rate of deformation increased with the impulse was governed by the core thickness.Compared with different sandwich panels,PMI foam sandwich struc-tures demonstrate significant advantages in terms of impact resistance under high-impulse conditions.
基金Projects(51979268,52279117,52309146)supported by the National Natural Science Foundation of ChinaProject(SKLGME-JBGS2401)supported by the Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,China。
文摘The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compression.While previous studies focused on the angleβbetween the maximum principal stress and the structural plane,the role of angleω,between the intermediate principal stress and the structural plane,is often overlooked.Utilizing artificially prefabricated granite specimens with a single non-penetrating structural plane,we set the loading angleβto range from 0°to 90°across seven groups,and assignedωvalues of 0°and 90°in two separate groups.The results show that the peak strength is negatively correlated withβup to 45°,beyond which it tends to stabilize.The angleωexerts a strengthening effect on the peak strength.Deformation mainly occurs post-peak,with the strain values ε_(1) and ε_(3) reaching levels 2−3 times higher than those in intact rock.The structural plane significantly influences failure mode whenω=0°,while failure localizes near the σ_(3) surface of the specimens whenω=90°.The findings enhance data on structural plane rocks under triaxial compression and inform theoretical research,excavation,and support design of rock structures.
文摘A hull structure is prone to local deformation and damage due to the pressure load on the surface.How to simulate surface pressure is an important issue in ship structure test.The loading mode of hydraulic actuator combined with high-pressure flexible bladder was proposed,and the numerical model of the loading device based on flexible bladder was established.The design and analysis method of high-pressure flexible bladder based on aramid-fiber reinforced thermoplastic polyurethane was proposed to break through the surface pressure loading technology of ship structures.The surface pressure loading system based on flexible bladder was developed.The ultimate strength verification test of the box girder under the combined action of bending moment and pressure was carried out to systematically verify the feasibility and applicability of the loading system.The results show that the surface pressure loading technology can be used well for applying uniform pressure to ship structures.Compared with the traditional surface loading methods,the improved device can be applied with horizontal constant pressure load,with rapid response and safe process,and the pressure load is always stable with the increase of the bending moment load during the test.The requirement for uniform loading in the comprehensive strength test of large structural models is satisfied and the accuracy of the test results is improved by this system.
基金supported by the National Natural Science Foundation of China(Grant Nos.12072299,11902276)the Natural Science Foundation of Sichuan Province(Grant No.2022NSFSC1802)+1 种基金the Basic Research Project of Southwest Jiaotong University(Grant No.2682023ZTPY009)the National Key Laboratory for Shock Wave and Detonation Physics of China(Grant No.JCKYS2019212007)。
文摘By combination of the transient Raman spectroscopic measurement and the density functional theoretical calculations,the structural evolution and stability of TATB under shock compression was investigated.Due to the improvement in synchronization control between two-stage light gas gun and the transient Raman spectra acquisition,as well as the sample preparation,the Raman peak of the N-O mode of TATB was firstly observed under shock pressure up to 13.6 GPa,noticeably higher than the upper limit of 8.5 GPa reported in available literatures.By taking into account of the continuous shift of the main peak and other observed Raman peaks,we did not distinguish any structural transition or any new species.Moreover,both the present Raman spectra and the time-resolved radiation of TATB during shock loading showed that TATB exhibits higher chemical stability than previous declaration.To reveal the detailed structural response and evolution of TATB under compression,the density functional theoretical calculations were conducted,and it was found that the pressure make N-O bond lengths shorter,nitro bond angles larger,and intermolecular and intra-molecular hydrogen bond interactions enhanced.The observed red shift of Raman peak was ascribed to the abnormal enhancement of H-bound effect on the scissor vibration mode of the nitro group.
文摘In this paper,the failure caused by HRAM loads which were generated by high-speed projectile penetration,and protection technology of the fluid-filled structure were explored.A bubble was preset on the projectile trajectory in a fluid-filled structure.Based on the reflection and transmission phenomena of pressure waves at the gas-liquid interface and the compressibility characteristics of gases,a numerical analysis was conducted on the influence of preset bubble on projectile penetration and structural failure characteristics.The results indicate that the secondary water-entry impact phenomenon occurs when a preset bubble exists on the projectile trajectory,leading to the secondary water entry impact loads.The rarefaction waves reflected on the surface of the preset bubble cause the attenuation ratio of the initial impact pressure peak to reach 68.8%and the total specific impulse attenuation ratio to reach 48.6%.Furthermore,the larger the bubble,the faster the projectile,and the more obvious the attenuation effect.Moreover,due to the compressibility of the bubble,the global deformation attenuation ratio of the front and rear walls can reach over 80%.However,the larger the bubble size,the faster the projectile velocity,the smaller the local deformation attenuation effect of the rear wall,and the more severe the failure at the perforation of the rear wall.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52378401,12202494)the Fundamental Research Funds for the Central Universities(Grant No.30922010918)。
文摘The compression and energy absorption properties of foam geopolymers increase stress wave attenuation under explosion impacts,reducing the vibration effect on the structure.Explosion tests were conducted using several composite structure models,including a concrete lining structure(CLS)without foam geopolymer and six foam geopolymer composite structures(FGCS)with different backfill parameters,to study the dynamic response and wave dissipation mechanisms of FGCS under explosive loading.Pressure,strain,and vibration responses at different locations were synchronously tested.The damage modes and dynamic responses of different models were compared,and how wave elimination and energy absorption efficiencies were affected by foam geopolymer backfill parameters was analyzed.The results showed that the foam geopolymer absorbed and dissipated the impact energy through continuous compressive deformation under high strain rates and dynamic loading,reducing the strain in the liner structure by 52%and increasing the pressure attenuation rate by 28%.Additionally,the foam geopolymer backfill reduced structural vibration and liner deformation,with the FGCS structure showing 35%less displacement and 70%less acceleration compared to the CLS.The FGCS model with thicker,less dense foam geopolymer backfill,having more pores and higher porosity,demonstrated better compression and energy absorption under dynamic impact,increasing stress wave attenuation efficiency.By analyzing the stress wave propagation and the compression characteristics of the porous medium,it was concluded that the stress transfer ratio of FGCS-ρ-579 was 77%lower than that of CLS,and the transmitted wave energy was 90%lower.The results of this study provide a scientific basis for optimizing underground composite structure interlayer parameters.
基金supported by the National Natural Science Foundation of China(Grant Nos.52475166,52175148)the Regional Collaboration Project of Shanxi Province(Grant No.202204041101044).
文摘Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to miniaturization of electronic components,it is challenging to directly measure or numerically predict the mechanical response of small-sized critical interconnections in board-level packaging structures to ensure the mechanical reliability of electronic devices in projectiles under harsh working conditions.To address this issue,an indirect measurement method using the Bayesian regularization-based load identification was proposed in this study based on finite element(FE)pre-dictions to estimate the load applied on critical interconnections of board-level packaging structures during the process of projectile penetration.For predicting the high-strain-rate penetration process,an FE model was established with elasto-plastic constitutive models of the representative packaging ma-terials(that is,solder material and epoxy molding compound)in which material constitutive parameters were calibrated against the experimental results by using the split-Hopkinson pressure bar.As the impact-induced dynamic bending of the printed circuit board resulted in an alternating tensile-compressive loading on the solder joints during penetration,the corner solder joints in the edge re-gions experience the highest S11 and strain,making them more prone to failure.Based on FE predictions at different structural scales,an improved Bayesian method based on augmented Tikhonov regulariza-tion was theoretically proposed to address the issues of ill-posed matrix inversion and noise sensitivity in the load identification at the critical solder joints.By incorporating a wavelet thresholding technique,the method resolves the problem of poor load identification accuracy at high noise levels.The proposed method achieves satisfactorily small relative errors and high correlation coefficients in identifying the mechanical response of local interconnections in board-level packaging structures,while significantly balancing the smoothness of response curves with the accuracy of peak identification.At medium and low noise levels,the relative error is less than 6%,while it is less than 10%at high noise levels.The proposed method provides an effective indirect approach for the boundary conditions of localized solder joints during the projectile penetration process,and its philosophy can be readily extended to other scenarios of multiscale analysis for highly nonlinear materials and structures under extreme loading conditions.
基金the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 101034425 for the project titled A2M2TECHThe Scientific and Technological Research Council of Türkiye (TUBITAK) with grant No 120C158 for the same A2M2TECH project under the TUBITAK's 2236/B program
文摘Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in the impact load mitigation where an external kinetic energy is absorbed by the deformation/crushing of lattice cells.This has motivated a growing number of experimental and numerical studies,recently,on the crushing behavior of additively produced lattice structures.The present study overviews the dynamic and quasi-static crushing behavior of additively produced Ti64,316L,and AlSiMg alloy lattice structures.The first part of the study summarizes the main features of two most commonly used additive processing techniques for lattice structures,namely selective-laser-melt(SLM)and electro-beam-melt(EBM),along with a description of commonly observed process induced defects.In the second part,the deformation and strain rate sensitivities of the selected alloy lattices are outlined together with the most widely used dynamic test methods,followed by a part on the observed micro-structures of the SLM and EBM-processed Ti64,316L and AlSiMg alloys.Finally,the experimental and numerical studies on the quasi-static and dynamic compression behavior of the additively processed Ti64,316L,and AlSiMg alloy lattices are reviewed.The results of the experimental and numerical studies of the dynamic properties of various types of lattices,including graded,non-uniform strut size,hollow,non-uniform cell size,and bio-inspired,were tabulated together with the used dynamic testing methods.The dynamic tests have been noted to be mostly conducted in compression Split Hopkinson Pressure Bar(SHPB)or Taylor-and direct-impact tests using the SHPB set-up,in all of which relatively small-size test specimens were tested.The test specimen size effect on the compression behavior of the lattices was further emphasized.It has also been shown that the lattices of Ti64 and AlSiMg alloys are relatively brittle as compared with the lattices of 316L alloy.Finally,the challenges associated with modelling lattice structures were explained and the micro tension tests and multi-scale modeling techniques combining microstructural characteristics with macroscopic lattice dynamics were recommended to improve the accuracy of the numerical simulations of the dynamic compression deformations of metallic lattice structures.
基金National Natural Science Foundation of China.Grant ID:11872123.
文摘Projectiles made of reactive structure materials(RSM)can damage the target with not only kinetic but also chemical energy,but the enhanced damage potential of RSM may become compromised if extreme loading condition disintegrates the projectile before the target is reached.In this work,a ductile coating of Ni was introduced to a tungsten-zirconium(W-Zr)alloy,a typical brittle RSM,to preserve the damage potential of the projectile.Detonation driving tests were carried out with X-ray photography and gunpowder deflagration driving tests were carried out with high-speed photography for the coated and uncoated RSM samples,respectively.The craters on the witness target were analyzed by scanning electron microscopy and X-ray diffraction.The Ni coating was found to effectively preserve the damage potential of the W-Zr alloy under extreme loading conditions,whereas the uncoated sample fractured and ignited before impacting the target in both detonation and deflagration driving.The crack propagation between the reactively brittle core and the ductile coating was analyzed based on the crack arrest theory to mechanistically demonstrate how the coating improves the structural integrity and preserves the damage potential of the projectile.Specifically,the Ni coating envelops theW-Zr core until the coated sphere penetrates the target,and the coating is then eroded and worn to release the reactive core for the projectile to damage the target more intensively.
文摘Reinforced concrete(RC) load bearing wall is widely used in high-rise and mid-rise buildings. Due to the number of walls in plan and reduction in lateral force portion, this system is not only stronger against earthquakes, but also more economical. The effect of progressive collapse caused by removal of load bearing elements, in various positions in plan and stories of the RC load bearing wall system was evaluated by nonlinear dynamic and static analyses. For this purpose, three-dimensional model of 10-story structure was selected. The analysis results indicated stability, strength and stiffness of the RC load-bearing wall system against progressive collapse. It was observed that the most critical condition for removal of load bearing walls was the instantaneous removal of the surrounding walls located at the corners of the building where the sections of the load bearing elements were changed. In this case, the maximum vertical displacement was limited to 6.3 mm and the structure failed after applying the load of 10 times the axial load bored by removed elements. Comparison between the results of the nonlinear dynamic and static analyses demonstrated that the "load factor" parameter was a reasonable criterion to evaluate the progressive collapse potential of the structure.
基金supports from and Na-tional key research and development program of China(project No.2018YFC0705703)the National Natural Science Foundation of China(project No.51708521,51778183).
文摘Dome structures have been used extensively for industrial,residential,and military infrastructure.Therefore,it is necessary to understand the damage risk potential for such structures for blast-resistant design considerations.This paper investigates the effect of blast load variability on the design value and the structural dynamic response.Therefore,the sources of uncertainty in the external blast load on dome structures were discussed firstly.Then based on the probabilistic blast load model for the dome,the rationality of a deterministic mass-increase safety method was assessed.It was found that previous deterministic design method cannot provide a consistent and sound assurance factor or reliability index on the entire dome roof.In addition,it was also proved that the assurance-based load method fails to ensure compliance with structural safety design standards on the dome roof when compared with the reliability-based blast method.A sensitivity analysis on the probabilistic blast load was conducted,and the results indicate that stand-off distance and explosive mass both act as dominant sources to influence the mean and variability of blast load.Therefore,based on the Latin hypercube sampling method,a reliability-based external blast load factor technique was proposed.This technique was further used to estimate structural damage levels of a single-layer reticulated dome under different reliability requirements,associated with a low,medium,and high level of protection grades for a specific explosion scenario,and it indicated that this technique can be useful in the building design to achieve a higher structural anti-explosion capacity.This study herein can serve as a reference for the calculation method of designed blast load.
基金the financial support from the China Postdoctora Science Foundation (project No. 2021M690406)the financial supports from the National Natural Science Foundation of China (project Nos. 51708521, 51778183)
文摘The structural response of a single-layer reticulated dome to external explosions is shaped by many variables,and the associated uncertainties imply non-deterministic results.Existing deterministic methods for predicting the consequences of specific explosions do not account for these uncertainties.Therefore,the impact of the uncertainties associated with these input variables on the structures’response needs to be studied and quantified.In this study,a parametric uncertainty analysis was conducted first.Then,local and global sensitivity analyses were carried out to identify the drivers of the structural dynamic response.A probabilistic structural response model was established based on sensitive variables and a reasonable sample size.Furthermore,some deterministic empirical methods for explosion-resistance design,including the plane blast load model of CONWEP,the curved blast load model under the 50%assurance level,and the 20%mass-increased method,were used for evaluating their reliability.The results of the analyses revealed that the structural response of a single-layer reticulated dome to an external blast loading is lognormally distributed.Evidently,the MB0.5 method based on the curved reflector load model yielded results with a relatively stable assurance rate and reliability,but CONWEP did not;thus,the 1.2MB0.5 method can be used for making high-confidence simple predictions.In addition,the results indicated that the structural response is very sensitive to the explosion parameters.Based on these results,it is suggested that for explosion proofing,setting up a defensive barrier is more effective than structural strengthening.
文摘This paper calculated load-carrying of isogrid and orthogrid of carbon-epoxy composite trellis wound structure(C/E CTWS) using non-linear finite element method.Based on the analysis,test cases were designed and tests of axial compression were carried.Analysis result and test result fit well.In order to be used in the project,this kind of structure cut-out repairing was calculated.The method presented in this paper has been proved and can be used to solve complicated engineering problems.According to calculations and experimental results combined with application,a principle of choosing wound structure is obtained and principle could be applied to engineering.
基金financial support from the China Postdoctora Science Foundation(project No.2021M690406)financial supports from the National Natural Science Foundation of China(project No.51708521,51778183)。
文摘Single-layer reticulated dome structure are commonly high-profile building in the public and can be attractive targets for terrorist bombings,so the public can benefit from enhanced safety with a stronger understanding of the behavior of single-layer reticulated dome structure under explosion.This paper investigates the fluid-structure interaction process and the dynamic response performance of the singlelayer reticulated dome under external blast load.Both experimental and numerical results shown that structural deformation is remarkably delayed compared with the velocity of blast wave,which advises the dynamic response of large-span reticulated dome structure has a negligible effect on the blast wave propagation under explosion.Four failure modes are identified by comparing the plastic development of each ring and the residual spatial geometric of the structure,i.e.,minor vibration,local depression,severe damage,and overall collapse.The plastic deformation energy and the displacement potential energy of the structure are the main consumers of the blast energy.In addition,the stress performance of the vertex member and the deep plastic ratio of the whole structure can serve as qualitative indicators to distinguish different failure modes.
基金Foundation item: Project(2013CB036405) supported by the National Basic Research Program of China Project(KZZD-EW-05) supported by the Key Research Program of the Chinese Academy of Sciences
文摘Pile-slab structure roadbed is a new form of ballastless track for high speed railway. Due to lack of corresponding design code, based on the analysis of its structure characteristics and application requirements, it is proposed to carry out load effect combination according to ultimate limit state and serviceability limit state, and the most unfavorable combination of each state is chosen to carry through design calculation for pile-slab structure. Space model of pile-slab structure can be simplified as a plane flame model, by using the orthogonal test method, and the design parameter of pile-slab structure is optimized. Moreover, based on the engineering background of Suining-Chongqing high-speed railway, the dynamic deformation characteristics of pile-slab structure roadbed are further researched by carrying on the indoor dynamic model test. The test results show that the settlement after construction of subgrade satisfies the requirement of settlement control to build ballastless track on soil subgrade for high-speed railway. Slab structure plays the role of arch shell as load is transmitted from slab to pile, and the vertical dynamic stress of subgrade soil is approximately of "K" form distribution with the depth. The distribution of pile stress is closely related to soil characteristics, which has an upset triangle shape where the large dynamic stress is at the top. Pile compared with soil shares most dynamic stress. Pile structure expands the depth of the dynamic response of subgrade has limited effect on dynamic response. These results can provide subgrade. and improves the stress of subgrade soil, and the speed of train scientific basis for pile-slab structure roadbed used on soil
基金supported by the National Natural Science Foundation of China(Grant No.51874041)the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(Grant No.52202012)。
文摘High-speed impact threats and terrorist actions on the battlefield require the development of more effective protective materials and structures,and various protective structure is designed according their energy-absorbing characteristics.In this research,the deformation behavior,microscopic failure modes and energy absorption characteristics of re-entrant hexagonal structure,regular hexagonal structure and regular quadrilateral structure are studied under different strain rates impact.The re-entrant hexagonal structure forms a“X”-shaped deformation zone,the regular quadrilateral and regular hexagonal structure form an“I”-shaped deformation zone.The microscopic appearance of the section is a mixed fracture form.The effects of the topological shape,cell angle,and cell height on the impact behavior of the structure were evaluated.When the cell height is fixed and the cell angle is changed,the energy absorption of the structure increase and then decrease as the relative density increase.The mechanical properties of the structure are optimal when the relative density is about 18.6%and the cell angle is22.5°.When the cell angle is fixed and the cell height is changed,as the relative density increases,the energy absorption of the structure gradually increases.The regular quadrilateral structure and the reentrant hexagonal structure experienced clear strain rate effects under dynamic impact conditions;the regular hexagonal structure did not exhibit obvious strain rate effects.The results presented herein provide a basis for further rational design and selection of shock-resistant protective structures that perform well in high-speed impact environments.
文摘Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures.
文摘Optimization of structural parameters aimed at improving the load carrying capacity of spatial flexible redundant manipulators is presented in this paper. In order to increase the ratio of load to mass of robots, the cross-sectional parameters and constructional parameters are optimized respectively. The cross-sectional and configurational parameters are optimized simultaneously. The numerical simulation of a 4R spatial manipulator is performed. The results show that the load capacity of robots has been greatly improved through the optimization strategies proposed in this paper.