Super high molecular weight copolymers of AM/NaA/AMPS were prepared by oxidation–reduction[OR-P(AM/NaA/AMPS)]and controlled radical polymerization[CR-P(AM/NaA/AMPS)].The resulting copolymers were fully characterized,...Super high molecular weight copolymers of AM/NaA/AMPS were prepared by oxidation–reduction[OR-P(AM/NaA/AMPS)]and controlled radical polymerization[CR-P(AM/NaA/AMPS)].The resulting copolymers were fully characterized,and the reaction conditions for their preparation were optimized.OR-P(AM/NaA/AMPS),CR-P(AM/NaA/AMPS),and conventional partially hydrolyzed polyacrylamide(HPAM)in brine solution were comprehensively characterized by thermogravimetric analysis,scanning electron microscopy,atomic force microscopy,and dynamic light scattering.ORP(AM/NaA/AMPS)and CR-P(AM/NaA/AMPS)containing AMPS monomer showed better salt resistance,temperature tolerance,and viscosification property than the conventional HPAM polymer,making them more promising for enhanced oil recovery.Through comprehensive comparison and analysis,it was found that OR-P(AM/NaA/AMPS)was more conducive for high-temperature condition due to the existence of xanthone in OR-P(AM/NaA/AMPS).On the other hand,CR-P(AM/NaA/AMPS)was more suitable for high-mineral atmosphere,which could be attributed to its higher intrinsic viscosity.展开更多
文章通过两步反应简单高效地制备出目标多孔有机笼RCC3,将其作为配体和CuBr_(2)配位构建多孔有机笼配合物RCC3@Cu。采用X-射线衍射(X-ray diffraction,XRD)和电喷雾电离质谱(electrospray ionization mass spectrometry,ESI-MS)表征RCC3...文章通过两步反应简单高效地制备出目标多孔有机笼RCC3,将其作为配体和CuBr_(2)配位构建多孔有机笼配合物RCC3@Cu。采用X-射线衍射(X-ray diffraction,XRD)和电喷雾电离质谱(electrospray ionization mass spectrometry,ESI-MS)表征RCC3@Cu的结构与组成,结果表明,RCC3@Cu配位稳定,有望用于介导原子转移自由基聚合(atom transfer radical polymerization,ATRP)。采用RCC3配体介导甲基丙烯酸甲酯(MMA)的ATRP,2 h其转化率达到80%,聚合物分散性指数(polymer dispersity index,PDI)为1.15;最终转化率为98.5%,PDI为1.16。聚合动力学显示RCC3介导的ATRP为近似一级反应动力学,符合活性聚合特征。该文研究RCC3配体介导不同类型单体的聚合,验证了RCC3配体具有单体泛用性。研究结果表明,RCC3体可有效应用于ATRP催化,有进一步研究价值。展开更多
基金supported by the National Science and Technology Major Project(No.2016ZX05011-003)The Certificate of China Postdoctoral Science Foundation(No.2016M592241).
文摘Super high molecular weight copolymers of AM/NaA/AMPS were prepared by oxidation–reduction[OR-P(AM/NaA/AMPS)]and controlled radical polymerization[CR-P(AM/NaA/AMPS)].The resulting copolymers were fully characterized,and the reaction conditions for their preparation were optimized.OR-P(AM/NaA/AMPS),CR-P(AM/NaA/AMPS),and conventional partially hydrolyzed polyacrylamide(HPAM)in brine solution were comprehensively characterized by thermogravimetric analysis,scanning electron microscopy,atomic force microscopy,and dynamic light scattering.ORP(AM/NaA/AMPS)and CR-P(AM/NaA/AMPS)containing AMPS monomer showed better salt resistance,temperature tolerance,and viscosification property than the conventional HPAM polymer,making them more promising for enhanced oil recovery.Through comprehensive comparison and analysis,it was found that OR-P(AM/NaA/AMPS)was more conducive for high-temperature condition due to the existence of xanthone in OR-P(AM/NaA/AMPS).On the other hand,CR-P(AM/NaA/AMPS)was more suitable for high-mineral atmosphere,which could be attributed to its higher intrinsic viscosity.