This paper uses a grouping-adjusting procedure to the data from a median linear regression model, and estimtes the regression coefficients by the method of weighted least squares. This method simplifies computation an...This paper uses a grouping-adjusting procedure to the data from a median linear regression model, and estimtes the regression coefficients by the method of weighted least squares. This method simplifies computation and in the meantime, preserves the same asymptotic normal distribution for the estimator, as in the ordinary minimum L_1-norm estimates.展开更多
In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard n...In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard normal distribution. We get the EB estimators by using kernel estimation of multivariate density function and its first order partial derivatives. It is shown that the convergence rates of the EB estimators are under the condition where an integer k > 1 . is an arbitrary small number and m is the dimension of the vector Y.展开更多
This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) prop...This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively.展开更多
Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predic...Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands.展开更多
Forest fires are natural disasters that can occur suddenly and can be very damaging,burning thousands of square kilometers.Prevention is better than suppression and prediction models of forest fire occurrence have dev...Forest fires are natural disasters that can occur suddenly and can be very damaging,burning thousands of square kilometers.Prevention is better than suppression and prediction models of forest fire occurrence have developed from the logistic regression model,the geographical weighted logistic regression model,the Lasso regression model,the random forest model,and the support vector machine model based on historical forest fire data from 2000 to 2019 in Jilin Province.The models,along with a distribution map are presented in this paper to provide a theoretical basis for forest fire management in this area.Existing studies show that the prediction accuracies of the two machine learning models are higher than those of the three generalized linear regression models.The accuracies of the random forest model,the support vector machine model,geographical weighted logistic regression model,the Lasso regression model,and logistic model were 88.7%,87.7%,86.0%,85.0%and 84.6%,respectively.Weather is the main factor affecting forest fires,while the impacts of topography factors,human and social-economic factors on fire occurrence were similar.展开更多
The article intends to find a method to quantify traffic congestion's impacts on travelers to help transportation planners and policy decision makers well understand congestion situations. Three new congestion indica...The article intends to find a method to quantify traffic congestion's impacts on travelers to help transportation planners and policy decision makers well understand congestion situations. Three new congestion indicators, including transportation environment satisfaction (TES), travel time satisfaction (TTS), and traffic congestion frequency and feeling (TCFF), are defined to estimate urban traffic congestion based on travelers' feelings. Data of travelers' attitude about congestion and trip information were collected from a survey in Shanghai, China. Based on the survey data, we estimated the value of the three indi- cators. Then, the principal components analysis was used to derive a small number of linear combinations of a set of variables to estimate the whole congestion status. A linear regression model was used to find out the significant variables which impact respondents' feelings. Two ordered logit models were used to select significant variables of TES and TTS. Attitudinal factor variables were also used in these models. The results show that attitudinal factor variables and cluster category variables are as important as sociodemographic variables in the models. Using the three congestion indicators, the government can collect travelers' feeling about traffic congestion and estimate the transportation policy that might be applied to cope with traffic congestion.展开更多
基金Research supported By AFOSC, USA, under Contract F49620-85-0008oy NNSFC of China.
文摘This paper uses a grouping-adjusting procedure to the data from a median linear regression model, and estimtes the regression coefficients by the method of weighted least squares. This method simplifies computation and in the meantime, preserves the same asymptotic normal distribution for the estimator, as in the ordinary minimum L_1-norm estimates.
文摘In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard normal distribution. We get the EB estimators by using kernel estimation of multivariate density function and its first order partial derivatives. It is shown that the convergence rates of the EB estimators are under the condition where an integer k > 1 . is an arbitrary small number and m is the dimension of the vector Y.
基金supported by the National Natural Science Funds for Distinguished Young Scholar (70825004)National Natural Science Foundation of China (NSFC) (10731010 and 10628104)+3 种基金the National Basic Research Program (2007CB814902)Creative Research Groups of China (10721101)Leading Academic Discipline Program, the 10th five year plan of 211 Project for Shanghai University of Finance and Economics211 Project for Shanghai University of Financeand Economics (the 3rd phase)
文摘This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively.
基金Funding from The Scientific and Technological Research Council of Turkey(Project No:2130026)is gratefully acknowledged
文摘Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands.
基金This research was funded by the National Natural Science Foundation of China(grant no.32271881).
文摘Forest fires are natural disasters that can occur suddenly and can be very damaging,burning thousands of square kilometers.Prevention is better than suppression and prediction models of forest fire occurrence have developed from the logistic regression model,the geographical weighted logistic regression model,the Lasso regression model,the random forest model,and the support vector machine model based on historical forest fire data from 2000 to 2019 in Jilin Province.The models,along with a distribution map are presented in this paper to provide a theoretical basis for forest fire management in this area.Existing studies show that the prediction accuracies of the two machine learning models are higher than those of the three generalized linear regression models.The accuracies of the random forest model,the support vector machine model,geographical weighted logistic regression model,the Lasso regression model,and logistic model were 88.7%,87.7%,86.0%,85.0%and 84.6%,respectively.Weather is the main factor affecting forest fires,while the impacts of topography factors,human and social-economic factors on fire occurrence were similar.
基金supported by the Key Natural Science Foundation of China:Urban Transportation Planning Theory and Methods under the Information Environment, Grant No. 50738004/E0807
文摘The article intends to find a method to quantify traffic congestion's impacts on travelers to help transportation planners and policy decision makers well understand congestion situations. Three new congestion indicators, including transportation environment satisfaction (TES), travel time satisfaction (TTS), and traffic congestion frequency and feeling (TCFF), are defined to estimate urban traffic congestion based on travelers' feelings. Data of travelers' attitude about congestion and trip information were collected from a survey in Shanghai, China. Based on the survey data, we estimated the value of the three indi- cators. Then, the principal components analysis was used to derive a small number of linear combinations of a set of variables to estimate the whole congestion status. A linear regression model was used to find out the significant variables which impact respondents' feelings. Two ordered logit models were used to select significant variables of TES and TTS. Attitudinal factor variables were also used in these models. The results show that attitudinal factor variables and cluster category variables are as important as sociodemographic variables in the models. Using the three congestion indicators, the government can collect travelers' feeling about traffic congestion and estimate the transportation policy that might be applied to cope with traffic congestion.