针对高速移动场景中正交时频空间(Orthogonal Time Frequency Space, OTFS)系统线性最小均方误差(Linear Minimum Mean Square Error, LMMSE)检测复杂度过高而难以快速有效实现的问题,利用零填充(Zero Padding, ZP)OTFS系统时域信道矩...针对高速移动场景中正交时频空间(Orthogonal Time Frequency Space, OTFS)系统线性最小均方误差(Linear Minimum Mean Square Error, LMMSE)检测复杂度过高而难以快速有效实现的问题,利用零填充(Zero Padding, ZP)OTFS系统时域信道矩阵呈块对角稀疏特性提出一种逐块迭代的对称逐次超松弛(Symmetric Successive over Relaxation, SSOR)迭代算法,在降低系统复杂度的同时获得与LMMSE检测近似的性能。仿真结果表明,与逐次超松弛(Successive over Relaxation, SOR)算法相比,所提算法对松弛参数不敏感且具有更快的收敛速度,在迭代次数为10次时误码性能几乎达到LMMSE误码性能,显著降低了检测器的复杂度。展开更多
Receding horizon H∞ control scheme which can deal with both the H∞ disturbance attenuation and mean square stability is proposed for a class of discrete-time Markovian jump linear systems when minimizing a given qua...Receding horizon H∞ control scheme which can deal with both the H∞ disturbance attenuation and mean square stability is proposed for a class of discrete-time Markovian jump linear systems when minimizing a given quadratic performance criteria. First, a control law is established for jump systems based on pontryagin’s minimum principle and it can be constructed through numerical solution of iterative equations. The aim of this control strategy is to obtain an optimal control which can minimize the cost function under the worst disturbance at every sampling time. Due to the difficulty of the assurance of stability, then the above mentioned approach is improved by determining terminal weighting matrix which satisfies cost monotonicity condition. The control move which is calculated by using this type of terminal weighting matrix as boundary condition naturally guarantees the mean square stability of the closed-loop system. A sufficient condition for the existence of the terminal weighting matrix is presented in linear matrix inequality (LMI) form which can be solved efficiently by available software toolbox. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed method.展开更多
Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent...Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.展开更多
为了降低Turbo均衡中均衡器的复杂度,该文提出了符号方差反馈均衡算法(SVFE)。该算法是对精确的线性最小均方误差估计值(LMMSE)进行Taylor展开得到的。在该算法中,先利用时不变均衡器得到初步符号估计值,再根据先验符号方差对估计值加权...为了降低Turbo均衡中均衡器的复杂度,该文提出了符号方差反馈均衡算法(SVFE)。该算法是对精确的线性最小均方误差估计值(LMMSE)进行Taylor展开得到的。在该算法中,先利用时不变均衡器得到初步符号估计值,再根据先验符号方差对估计值加权,最后进行时不变滤波得到更佳的符号估计值。由于用到了时变的先验符号方差信息,其性能更接近精确的LMMSE均衡器。将所提算法用于Proakis C信道下的Turbo均衡处理,和时不变均衡算法进行仿真对比,所提算法将信噪比损失从0.83 d B降到了0.17 d B,并且仍可通过快速傅里叶变换降低为对数复杂度。展开更多
针对典型的雷达和红外异类传感器信息融合系统,提出了一种新的雷达和红外信息融合算法。对雷达和红外传感数据进行了预处理,分别滤波得到各自的局部航迹,基于线性最小均方误差准则(Linear Minimum Mean Square Error,LMMSE)对局部航迹...针对典型的雷达和红外异类传感器信息融合系统,提出了一种新的雷达和红外信息融合算法。对雷达和红外传感数据进行了预处理,分别滤波得到各自的局部航迹,基于线性最小均方误差准则(Linear Minimum Mean Square Error,LMMSE)对局部航迹进行融合以得到最终航迹。仿真结果表明:该算法可以对雷达和红外传感器进行有效融合并大幅提高航迹跟踪精度。展开更多
文摘针对高速移动场景中正交时频空间(Orthogonal Time Frequency Space, OTFS)系统线性最小均方误差(Linear Minimum Mean Square Error, LMMSE)检测复杂度过高而难以快速有效实现的问题,利用零填充(Zero Padding, ZP)OTFS系统时域信道矩阵呈块对角稀疏特性提出一种逐块迭代的对称逐次超松弛(Symmetric Successive over Relaxation, SSOR)迭代算法,在降低系统复杂度的同时获得与LMMSE检测近似的性能。仿真结果表明,与逐次超松弛(Successive over Relaxation, SOR)算法相比,所提算法对松弛参数不敏感且具有更快的收敛速度,在迭代次数为10次时误码性能几乎达到LMMSE误码性能,显著降低了检测器的复杂度。
基金supported by the National Natural Science Foundation of China (60974001)Jiangsu "Six Personnel Peak" Talent-Funded Projects
文摘Receding horizon H∞ control scheme which can deal with both the H∞ disturbance attenuation and mean square stability is proposed for a class of discrete-time Markovian jump linear systems when minimizing a given quadratic performance criteria. First, a control law is established for jump systems based on pontryagin’s minimum principle and it can be constructed through numerical solution of iterative equations. The aim of this control strategy is to obtain an optimal control which can minimize the cost function under the worst disturbance at every sampling time. Due to the difficulty of the assurance of stability, then the above mentioned approach is improved by determining terminal weighting matrix which satisfies cost monotonicity condition. The control move which is calculated by using this type of terminal weighting matrix as boundary condition naturally guarantees the mean square stability of the closed-loop system. A sufficient condition for the existence of the terminal weighting matrix is presented in linear matrix inequality (LMI) form which can be solved efficiently by available software toolbox. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed method.
基金supported by National Natural Science Foundation of China(62371225,62371227)。
文摘Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.
文摘为了降低Turbo均衡中均衡器的复杂度,该文提出了符号方差反馈均衡算法(SVFE)。该算法是对精确的线性最小均方误差估计值(LMMSE)进行Taylor展开得到的。在该算法中,先利用时不变均衡器得到初步符号估计值,再根据先验符号方差对估计值加权,最后进行时不变滤波得到更佳的符号估计值。由于用到了时变的先验符号方差信息,其性能更接近精确的LMMSE均衡器。将所提算法用于Proakis C信道下的Turbo均衡处理,和时不变均衡算法进行仿真对比,所提算法将信噪比损失从0.83 d B降到了0.17 d B,并且仍可通过快速傅里叶变换降低为对数复杂度。
文摘针对典型的雷达和红外异类传感器信息融合系统,提出了一种新的雷达和红外信息融合算法。对雷达和红外传感数据进行了预处理,分别滤波得到各自的局部航迹,基于线性最小均方误差准则(Linear Minimum Mean Square Error,LMMSE)对局部航迹进行融合以得到最终航迹。仿真结果表明:该算法可以对雷达和红外传感器进行有效融合并大幅提高航迹跟踪精度。