期刊文献+
共找到918篇文章
< 1 2 46 >
每页显示 20 50 100
Seeker optimization algorithm:a novel stochastic search algorithm for global numerical optimization 被引量:15
1
作者 Chaohua Dai Weirong Chen +1 位作者 Yonghua Song Yunfang Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期300-311,共12页
A novel heuristic search algorithm called seeker op- timization algorithm (SOA) is proposed for the real-parameter optimization. The proposed SOA is based on simulating the act of human searching. In the SOA, search... A novel heuristic search algorithm called seeker op- timization algorithm (SOA) is proposed for the real-parameter optimization. The proposed SOA is based on simulating the act of human searching. In the SOA, search direction is based on empir- ical gradients by evaluating the response to the position changes, while step length is based on uncertainty reasoning by using a simple fuzzy rule. The effectiveness of the SOA is evaluated by using a challenging set of typically complex functions in compari- son to differential evolution (DE) and three modified particle swarm optimization (PSO) algorithms. The simulation results show that the performance of the SOA is superior or comparable to that of the other algorithms. 展开更多
关键词 swarm intelligence global optimization human searching behaviors seeker optimization algorithm.
在线阅读 下载PDF
A composite particle swarm algorithm for global optimization of multimodal functions 被引量:7
2
作者 谭冠政 鲍琨 Richard Maina Rimiru 《Journal of Central South University》 SCIE EI CAS 2014年第5期1871-1880,共10页
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual... During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. 展开更多
关键词 particle swarm algorithm global numerical optimization novel learning strategy assisted search mechanism feedbackprobability regulation
在线阅读 下载PDF
A new hybrid algorithm for global optimization and slope stability evaluation 被引量:3
3
作者 Taha Mohd Raihan Khajehzadeh Mohammad Eslami Mahdiyeh 《Journal of Central South University》 SCIE EI CAS 2013年第11期3265-3273,共9页
A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems a... A new hybrid optimization algorithm was presented by integrating the gravitational search algorithm (GSA) with the sequential quadratic programming (SQP), namely GSA-SQP, for solving global optimization problems and minimization of factor of safety in slope stability analysis. The new algorithm combines the global exploration ability of the GSA to converge rapidly to a near optimum solution. In addition, it uses the accurate local exploitation ability of the SQP to accelerate the search process and find an accurate solution. A set of five well-known benchmark optimization problems was used to validate the performance of the GSA-SQP as a global optimization algorithm and facilitate comparison with the classical GSA. In addition, the effectiveness of the proposed method for slope stability analysis was investigated using three ease studies of slope stability problems from the literature. The factor of safety of earth slopes was evaluated using the Morgenstern-Price method. The numerical experiments demonstrate that the hybrid algorithm converges faster to a significantly more accurate final solution for a variety of benchmark test functions and slope stability problems. 展开更多
关键词 gravitational search algorithm sequential quadratic programming hybrid algorithm global optimization slope stability
在线阅读 下载PDF
Modified evolutionary algorithm for global optimization 被引量:1
4
作者 郭崇慧 陆玉昌 唐焕文 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第1期1-6,共6页
A modification of evolutionary programming or evolution strategies for ndimensional global optimization is proposed. Based on the ergodicity and inherentrandomness of chaos, the main characteristic of the new algorith... A modification of evolutionary programming or evolution strategies for ndimensional global optimization is proposed. Based on the ergodicity and inherentrandomness of chaos, the main characteristic of the new algorithm which includes two phases is that chaotic behavior is exploited to conduct a rough search of the problem space in order to find the promising individuals in Phase I. Adjustment strategy of steplength and intensive searches in Phase II are employed. The population sequences generated by the algorithm asymptotically converge to global optimal solutions with probability one. The proposed algorithm is applied to several typical test problems. Numerical results illustrate that this algorithm can more efficiently solve complex global optimization problems than evolutionary programming and evolution strategies in most cases. 展开更多
关键词 global optimization evolutionary algorithms chaos search
在线阅读 下载PDF
Global optimization by small-world optimization algorithm based on social relationship network 被引量:1
5
作者 李晋航 邵新宇 +2 位作者 龙渊铭 朱海平 B.R.Schlessman 《Journal of Central South University》 SCIE EI CAS 2012年第8期2247-2265,共19页
A fast global convergence algorithm, small-world optimization (SWO), was designed to solve the global optimization problems, which was inspired from small-world theory and six degrees of separation principle in sociol... A fast global convergence algorithm, small-world optimization (SWO), was designed to solve the global optimization problems, which was inspired from small-world theory and six degrees of separation principle in sociology. Firstly, the solution space was organized into a small-world network model based on social relationship network. Secondly, a simple search strategy was adopted to navigate into this network in order to realize the optimization. In SWO, the two operators for searching the short-range contacts and long-range contacts in small-world network were corresponding to the exploitation and exploration, which have been revealed as the common features in many intelligent algorithms. The proposed algorithm was validated via popular benchmark functions and engineering problems. And also the impacts of parameters were studied. The simulation results indicate that because of the small-world theory, it is suitable for heuristic methods to search targets efficiently in this constructed small-world network model. It is not easy for each test mail to fall into a local trap by shifting into two mapping spaces in order to accelerate the convergence speed. Compared with some classical algorithms, SWO is inherited with optimal features and outstanding in convergence speed. Thus, the algorithm can be considered as a good alternative to solve global optimization problems. 展开更多
关键词 global optimization intelligent algorithm small-world optimization decentralized search
在线阅读 下载PDF
Global Optimization for Combination Test Suite by Cluster Searching Algorithm
6
作者 Hao Chen Xiaoying Pan Jiaze Sun 《自动化学报》 EI CSCD 北大核心 2017年第9期1625-1635,共11页
在线阅读 下载PDF
Global optimal path planning for mobile robot based onimproved Dijkstra algorithm and ant system algorithm 被引量:21
7
作者 谭冠政 贺欢 Aaron Sloman 《Journal of Central South University of Technology》 EI 2006年第1期80-86,共7页
A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK ... A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning. 展开更多
关键词 mobile robot global optimal path planning improved Dijkstra algorithm ant system algorithm MAKLINK graph free MAKLINK line
在线阅读 下载PDF
Convergence and stability of the Newton-Like algorithm with estimation error in optimization flow control 被引量:1
8
作者 Yang Jun Li Shiyong +1 位作者 Long Chengnian Guan Xinping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期591-597,共7页
The Newton-Like algorithm with price estimation error in optimization flow control in network is analyzed. The estimation error is treated as inexactness of the gradient and the inexact descent direction is analyzed. ... The Newton-Like algorithm with price estimation error in optimization flow control in network is analyzed. The estimation error is treated as inexactness of the gradient and the inexact descent direction is analyzed. Based on the optimization theory, a sufficient condition for convergence of this algorithm with bounded price estimation error is obtained. Furthermore, even when this sufficient condition doesn't hold, this algorithm can also converge, provided a modified step size, and an attraction region is obtained. Based on Lasalle's invariance principle applied to a suitable Lyapunov function, the dynamic system described by this algorithm is proved to be global stability if the error is zero. And the Newton-Like algorithm with bounded price estimation error is also globally stable if the error satisfies the sufficient condition for convergence. All trajectories ultimately converge to the equilibrium point. 展开更多
关键词 flow control Newton-Like algorithm convergence global stability optimization Lyapunov function.
在线阅读 下载PDF
Ant Colony System Algorithm for Real-Time Globally Optimal Path Planning of Mobile Robots 被引量:26
9
作者 TAN Guan-Zheng HE Huan SLOMAN Aaron 《自动化学报》 EI CSCD 北大核心 2007年第3期279-285,共7页
为活动机器人计划的即时全球性最佳的路径的一个新奇方法基于蚂蚁殖民地系统(交流) 被建议算法。这个方法包括三步:第一步正在利用 MAKLINK 图理论建立活动机器人的空间模型,第二步正在利用 Dijkstra 算法发现一条非最优的没有碰撞的... 为活动机器人计划的即时全球性最佳的路径的一个新奇方法基于蚂蚁殖民地系统(交流) 被建议算法。这个方法包括三步:第一步正在利用 MAKLINK 图理论建立活动机器人的空间模型,第二步正在利用 Dijkstra 算法发现一条非最优的没有碰撞的路径,并且第三步正在利用 ACS 算法优化非最优的路径的地点以便产生全球性最佳的路径。建议方法是有效的并且能在即时路径被使用活动机器人计划的计算机模拟实验表演的结果。建议方法比与优秀人材模型一起基于基因算法计划方法的路径处于集中速度,答案变化,动态集中行为,和计算效率有更好的性能,这被验证了。 展开更多
关键词 蚁群系统 运算法则 自动化系统 计算机技术
在线阅读 下载PDF
An optimization method: hummingbirds optimization algorithm 被引量:1
10
作者 ZHANG Zhuoran HUANG Changqiang +2 位作者 HUANG Hanqiao TANG Shangqin DONG Kangsheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期386-404,共19页
This paper introduces an optimization algorithm, the hummingbirds optimization algorithm(HOA), which is inspired by the foraging process of hummingbirds. The proposed algorithm includes two phases: a self-searching ph... This paper introduces an optimization algorithm, the hummingbirds optimization algorithm(HOA), which is inspired by the foraging process of hummingbirds. The proposed algorithm includes two phases: a self-searching phase and a guide-searching phase. With these two phases, the exploration and exploitation abilities of the algorithm can be balanced. Both the constrained and unconstrained benchmark functions are employed to test the performance of HOA. Ten classic benchmark functions are considered as unconstrained benchmark functions. Meanwhile, two engineering design optimization problems are employed as constrained benchmark functions. The results of these experiments demonstrate HOA is efficient and capable of global optimization. 展开更多
关键词 population-based algorithm global optimization hummingbirds optimization algorithm(HOA) engineering design optimization
在线阅读 下载PDF
Method of Fire Image Identification Based on Optimization Theory 被引量:1
11
作者 Lu Jiecheng, Ding Ding, Wu Longbiao & Song WeiguoDept. of Electronic Science and Technology, University of Science and Technology of China, Hefei 230026, P. R. China(Received March 3, 2001) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第2期78-83,共6页
In view of some distinctive characteristics of the early-stage flame image, a corresponding method of characteristic extraction is presented. Also introduced is the application of the improved BP algorithm based on th... In view of some distinctive characteristics of the early-stage flame image, a corresponding method of characteristic extraction is presented. Also introduced is the application of the improved BP algorithm based on the optimization theory to identifying fire image characteristics. First the optimization of BP neural network adopting Levenberg-Marquardt algorithm with the property of quadratic convergence is discussed, and then a new system of fire image identification is devised. Plenty of experiments and field tests have proved that this system can detect the early-stage fire flame quickly and reliably. 展开更多
关键词 Fire flame Characteristic extraction optimization theory levenberg-marquardt algorithm.
在线阅读 下载PDF
基于广义换热网络的质量交换网络质能比拟及全局优化 被引量:1
12
作者 肖媛 陈怡 +1 位作者 刘思琪 崔国民 《化工进展》 北大核心 2025年第1期121-134,共14页
质量交换网络是过程系统高效经济回收污染物或杂质的重要途径,其中组分浓度的小尺度特征对于其求解域和全局优化性能存在一定限制。基于质量传递和能量传递比拟理论,本文假设了单位高度塔板提供有效传质的塔板质量,建立了非连续传质的... 质量交换网络是过程系统高效经济回收污染物或杂质的重要途径,其中组分浓度的小尺度特征对于其求解域和全局优化性能存在一定限制。基于质量传递和能量传递比拟理论,本文假设了单位高度塔板提供有效传质的塔板质量,建立了非连续传质的板式塔和广义换热器的比拟关系;在此基础上,将小尺度质量交换网络比拟为广义换热网络,进而采用节点非结构模型和强制进化随机游走算法对广义换热网络进行全局优化;最后,将优化所得的广义换热网络回归为质量交换网络,使其满足传质可行性约束。算例分析表明,该方法可有效拓展质量交换网络搜索空间,提升流股匹配的多样性和全局优化性能。同时,灵活调整比拟尺度和协调系数能够进一步丰富优化路径,提升最优解的质量,获得了R2S3算例和R2S2算例优于文献最优的结构。 展开更多
关键词 过程系统 质量交换网络 质能比拟 广义换热网络 全局优化 强制进化随机游走算法
在线阅读 下载PDF
一类新的无参数的填充打洞函数法
13
作者 袁柳洋 汤梦瑶 迟晓妮 《运筹学学报(中英文)》 北大核心 2025年第2期214-220,共7页
自填充函数算法被提出以来,参数被视为制约算法效率的主要因素,因此构造无参数的填充函数显得极为重要。为了提高算法效率,本文构造了一类新的无参数的填充打洞函数,分析并讨论了该函数的性质。基于新的填充打洞函数,提出了一个新的全... 自填充函数算法被提出以来,参数被视为制约算法效率的主要因素,因此构造无参数的填充函数显得极为重要。为了提高算法效率,本文构造了一类新的无参数的填充打洞函数,分析并讨论了该函数的性质。基于新的填充打洞函数,提出了一个新的全局优化算法,并对算法进行了数值实验,数值实验结果表明该算法可行且有效。 展开更多
关键词 填充函数法 打洞函数法 全局优化算法 局部极小点 全局极小点
在线阅读 下载PDF
基于全局和声搜索算法的椭圆拟合
14
作者 雍龙泉 张媛媛 黎延海 《安徽大学学报(自然科学版)》 北大核心 2025年第1期1-7,共7页
建立了椭圆拟合问题的约束优化模型,利用绝对值函数给出了一种约束处理方法,将原问题转化为无约束优化,采用全局和声搜索算法求解.数值实验分别对长轴和短轴在坐标轴上、长轴和短轴不在坐标轴上的椭圆拟合问题进行了研究,结果表明在数... 建立了椭圆拟合问题的约束优化模型,利用绝对值函数给出了一种约束处理方法,将原问题转化为无约束优化,采用全局和声搜索算法求解.数值实验分别对长轴和短轴在坐标轴上、长轴和短轴不在坐标轴上的椭圆拟合问题进行了研究,结果表明在数据没有异常值的条件下,即使有噪声,拟合结果也较好. 展开更多
关键词 椭圆拟合 绝对值函数 约束优化 全局和声搜索算法
在线阅读 下载PDF
汽车驱动桥螺旋锥齿轮齿面测量误差补偿方法
15
作者 刘永生 谭佳敏 +3 位作者 王瑞富 户盼茹 甘鑫斌 陈一馨 《汽车安全与节能学报》 北大核心 2025年第2期197-206,共10页
提升汽车驱动桥螺旋锥齿轮齿面加工质量对整车的安全与节能性能有重要意义,该文针对汽车驱动桥螺旋锥齿轮实测和理论齿面存在的测量误差,提出了一种基于对偶四元数优化的迭代最近点(ICP)齿面测量误差补偿方法。将误差补偿问题转化为两... 提升汽车驱动桥螺旋锥齿轮齿面加工质量对整车的安全与节能性能有重要意义,该文针对汽车驱动桥螺旋锥齿轮实测和理论齿面存在的测量误差,提出了一种基于对偶四元数优化的迭代最近点(ICP)齿面测量误差补偿方法。将误差补偿问题转化为两曲面的配准问题,利用对偶四元数对齿面配准模型进行表示并得出误差矩阵,将误差矩阵线性化并使用凸松弛的全局优化算法对其实部进行优化,实现螺旋锥齿轮齿面的精确配准。结果表明:螺旋锥齿轮凹齿面的误差补偿率最高达77%,最大误差由补偿前的22.11μm降至5.64μm,平均误差由补偿前的10.34μm降至2.38μm,该算法与传统奇异值分解法(SVD)、四元数法和Levenberg-Marquardt法(L-M)相比有更高的求解精度和稳定性,证明所提出的补偿方法具有可行性。 展开更多
关键词 驱动桥 螺旋锥齿轮 对偶四元数 迭代最近点算法(ICP) 全局优化
在线阅读 下载PDF
不动点演化算法
16
作者 苏清华 洪楠 胡中波 《西南交通大学学报》 北大核心 2025年第1期175-184,共10页
为设计高效稳定的演化算法,将方程求根的不动点迭代思想引入到优化领域,通过将演化算法的寻优过程看作为在迭代框架下方程不动点的逐步显示化过程,设计出一种基于数学模型的演化新算法,即不动点演化算法(fixed point evolution algorith... 为设计高效稳定的演化算法,将方程求根的不动点迭代思想引入到优化领域,通过将演化算法的寻优过程看作为在迭代框架下方程不动点的逐步显示化过程,设计出一种基于数学模型的演化新算法,即不动点演化算法(fixed point evolution algorithm,FPEA).该算法的繁殖算子是由Aitken加速的不动点迭代模型导出的二次多项式,其整体框架继承传统演化算法(如差分演化算法)基于种群的迭代模式.试验结果表明:在基准函数集CEC2014、CEC2019上,本文算法的最优值平均排名在所有比较算法中排名第1;在4个工程约束设计问题上,FPEA与CSA、GPE等多个算法相比,能以较少的计算开销获得最高的求解精度. 展开更多
关键词 演化算法 全局优化 不动点迭代法 Aitken加速法 工程约束设计问题
在线阅读 下载PDF
基于改进粒子群算法的6R机械臂时间最优轨迹规划 被引量:2
17
作者 王迈新 闫莉 李雨菲 《制造技术与机床》 北大核心 2025年第2期36-42,共7页
为了提高机械臂的工作效率和稳定性,提出一种改进粒子群算法(particle swarm optimization,PSO)的时间最优5次B样条插值轨迹优化算法。以UR10机械臂为研究对象,首先,利用5次B样条曲线对给定的轨迹点进行插值;其次,针对传统PSO算法存在... 为了提高机械臂的工作效率和稳定性,提出一种改进粒子群算法(particle swarm optimization,PSO)的时间最优5次B样条插值轨迹优化算法。以UR10机械臂为研究对象,首先,利用5次B样条曲线对给定的轨迹点进行插值;其次,针对传统PSO算法存在求解精度低、易陷入局部最优的缺陷,调整算法中的惯性权重和认知因子,使其随着迭代次数的增加而动态改变数值大小,进而提高算法前期全局搜索能力和后期局部搜索能力;最后,通过3种测试函数测试和仿真实验验证,结果表明,改进后的PSO算法的求解精度提升,可以有效提高机械臂的工作效率。 展开更多
关键词 机械臂 5次B样条曲线 粒子群算法 时间最优轨迹规划 全局搜索能力 局部搜索能力
在线阅读 下载PDF
基于SWAT-EPIC耦合模型的区域苹果单产模拟及土壤碳动态评估
18
作者 黄元嘉 霍艾迪 +2 位作者 曹馨升 安佳璐 刘琪 《农业工程学报》 北大核心 2025年第11期98-106,共9页
为提高现有作物生长模型单产模拟精度,明确土壤水分供需变化与产量之间的动态关系,该研究构建了水文—作物生长耦合模型SWAT-EPIC(soil and water assessment tool-environmental policy integrated climate)。基于参数敏感性优化的扩... 为提高现有作物生长模型单产模拟精度,明确土壤水分供需变化与产量之间的动态关系,该研究构建了水文—作物生长耦合模型SWAT-EPIC(soil and water assessment tool-environmental policy integrated climate)。基于参数敏感性优化的扩展傅里叶幅度敏感性检验算法(extended fourier amplitude sensitivity test,E-FAST),在陕北黄土高原建立包含土壤碳动态评估的苹果单产评估体系。结果表明,优化后的模型在旱作苹果单产的模拟精度误差减少了38.98%,模拟RMSE=2.56%,RRMSE≈9.8%,具有良好的模拟性能。降水对果园浅层土壤水分补给具有直接作用,而深层水分持续消耗加剧干旱胁迫,成为限制苹果单产提升的关键因素。此外,农地改种果园后0~10m土壤有机碳储量提升了14.85%。本研究表明,通过整合水文过程与作物生长机制,SWAT-EPIC耦合模型能够更全面反演区域水分与产量的响应关系,为干旱区果园水分管理与可持续高产提供科学依据。 展开更多
关键词 含水率 土壤碳 耦合模型 苹果 全局优化算法 产量
在线阅读 下载PDF
基于TDLAS多线吸收的超燃冲压发动机直连台架燃烧场二维分布测量
19
作者 夏晖晖 张顺平 +5 位作者 杨顺华 阚瑞峰 许振宇 阮俊 姚路 黄安 《实验流体力学》 北大核心 2025年第1期80-86,共7页
本文针对超燃冲压发动机燃烧室扩张段非均匀流场温度和水汽浓度二维分布的高分辨率测量需求,发展了先进的可调谐激光吸收光谱(TDLAS)燃烧场分布重建技术,该技术通过增加激光测量光路上扫描获得的水汽吸收谱线数目,实现场分布重建问题求... 本文针对超燃冲压发动机燃烧室扩张段非均匀流场温度和水汽浓度二维分布的高分辨率测量需求,发展了先进的可调谐激光吸收光谱(TDLAS)燃烧场分布重建技术,该技术通过增加激光测量光路上扫描获得的水汽吸收谱线数目,实现场分布重建问题求解方程数量的增加;通过联立所有交叉光路下吸收光谱获得的吸光度方程,构建以温度和浓度为未知数的最优化目标函数;并采用全局寻优模拟退火算法对目标函数进行求解,实现温度场和水汽分压场的重建。发动机直连台架试验中,采用正交光路布局,设计共16条测量光路(水平5条、垂直11条)的方形光机结构,集成TDLAS测量系统。对5只DFB激光器采用分时直接吸收探测方式,测量频率4 kHz,每条测量光路下可扫描获得5条水汽吸收谱线(7467.77、7444.36、7185.60、7179.75和6807.83 cm),系统在高温炉上开展了多温度台阶标定测试,温度测量偏差在2.7%以内。外场试验中,对16条光路下同步采集到的吸收光谱数据进行离线处理,获得了发动机燃油点火、燃烧、熄火各个状态下的温度场和水汽分压场分布数据。试验结果表明:TDLAS多线吸收测量技术能够实现场分布准确稳定测量,满足发动机复杂燃烧流场诊断和恶劣工况工程应用需求。 展开更多
关键词 超燃冲压发动机 燃烧诊断 场分布二维测量 可调谐激光吸收光谱 全局寻优重建算法
在线阅读 下载PDF
基于地图分解AGV全局路径规划新方法
20
作者 汪行 黄细霞 梁董 《计算机应用研究》 北大核心 2025年第8期2355-2363,共9页
针对传统A^(*)算法在大型场景下AGV(automated guided vehicle)路径规划时遍历节点多、路径平滑性差和搜索时间长等问题,提出了三层结构的块搜索A^(*)(Blocks-A^(*))算法,并构建麦克纳姆轮AGV解决运动学约束问题。Blocks-A^(*)算法将地... 针对传统A^(*)算法在大型场景下AGV(automated guided vehicle)路径规划时遍历节点多、路径平滑性差和搜索时间长等问题,提出了三层结构的块搜索A^(*)(Blocks-A^(*))算法,并构建麦克纳姆轮AGV解决运动学约束问题。Blocks-A^(*)算法将地图分解为多个较大的区域(块),采用以块搜索代替节点搜索的方式。第一层,通过先验地图信息划分自由空间和限制空间,将自由空间分解成若干三角形,对三角形进行节点等效化并构建邻接矩阵;第二层,运用Blocks-A^(*)算法计算最优块通道,生成基于邻接三角形边界线中点的次优路径;第三层,根据不同场景应用线性规划或二次规划优化模型,生成最终的最优路径。实验结果表明,所提算法在大型场景下的遍历节点数明显减少,优化后的路径平滑度更符合AGV的运行要求,搜索效率得到显著提高,可专门应对大型场景下的路径规划问题。 展开更多
关键词 地图分解 A^(*)算法 麦克纳姆轮 路径优化 全局路径规划
在线阅读 下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部