期刊文献+
共找到2,819篇文章
< 1 2 141 >
每页显示 20 50 100
多策略改进COA算法优化LSSVM的变压器故障诊断研究 被引量:1
1
作者 李斌 白翔旭 《电工电能新技术》 北大核心 2025年第4期112-119,共8页
为解决变压器故障诊断准确率低的问题,本文提出一种多策略改进浣熊优化算法(ICOA)与最小二乘支持向量机(LSSVM)相结合的变压器故障诊断方法。首先,通过核主成分分析(KPCA)将变压器故障数据集进行特征提取,降低故障数据维度;其次,应用混... 为解决变压器故障诊断准确率低的问题,本文提出一种多策略改进浣熊优化算法(ICOA)与最小二乘支持向量机(LSSVM)相结合的变压器故障诊断方法。首先,通过核主成分分析(KPCA)将变压器故障数据集进行特征提取,降低故障数据维度;其次,应用混沌映射、透镜反向学习、Levy飞行等策略对浣熊优化算法(COA)进行优化,提高全局寻优能力;然后,应用ICOA算法进行LSSVM参数寻优,构建ICOA-LSSVM故障诊断模型;最后,将特征提取后的数据导入ICOA-LSSVM中并与其他模型对比。实验结果表明所提方法准确率为96.19%,相比其他诊断模型具有更高的故障诊断精度。 展开更多
关键词 变压器故障诊断 浣熊优化算法 核主成分分析 最小二乘支持向量机
在线阅读 下载PDF
基于SVS算法优选整形正则化参数的WLSSI谱反演方法研究 被引量:1
2
作者 乐友喜 付俊楠 葛传友 《石油地球物理勘探》 北大核心 2025年第2期440-451,共12页
谱反演方法是研究非平稳地震信号的有效手段,在地震信号处理、分析和综合解释领域发挥了重要的作用。文中提出一种基于分群涡流搜索(SVS)算法优选整形正则化参数的加权最小二乘谱反演(WLSSISVSOSR)方法。该方法从一般正问题的理论公式出... 谱反演方法是研究非平稳地震信号的有效手段,在地震信号处理、分析和综合解释领域发挥了重要的作用。文中提出一种基于分群涡流搜索(SVS)算法优选整形正则化参数的加权最小二乘谱反演(WLSSISVSOSR)方法。该方法从一般正问题的理论公式出发,反演得到地震信号的傅里叶级数系数,然后将整形正则化思想引入加权最小二乘谱反演中,基于谱反演方法构造了一种整形正则化算子;采用分群涡流搜索算法对整形正则化参数进行优选,较好地克服了反演过程中的收敛速度慢和稳定性差的问题,获得了地震信号较为稳定的时―频域分布特征。模型测试及实际资料处理结果表明:该方法具有很好的时频域分辨率及能量聚焦性,能够识别含油气储层的优势频率范围;利用优势频率的瞬时振幅特征,可以基本确定含油气储层的横向分布范围,从而实现对含油气储层的精细刻画和描述。 展开更多
关键词 谱反演 整形正则化 分群涡流搜索算法 加权最小二乘 时频谱
在线阅读 下载PDF
基于RLS-RBPF算法的车辆悬架参数辨识方法研究
3
作者 王姝 董传昊 +3 位作者 张大伟 赵轩 周辰雨 邵帅 《重庆理工大学学报(自然科学)》 北大核心 2025年第7期19-27,共9页
在汽车的运行过程中,悬架系统的状态不可避免地会发生改变。为了准确评估悬架参数的长期变化,尤其是实现早期故障预警,提出了一种基于车辆实际行驶状态的悬架参数辨识方法,首先在车辆的关键部位安装振动传感器,采集振动加速度信号。然后... 在汽车的运行过程中,悬架系统的状态不可避免地会发生改变。为了准确评估悬架参数的长期变化,尤其是实现早期故障预警,提出了一种基于车辆实际行驶状态的悬架参数辨识方法,首先在车辆的关键部位安装振动传感器,采集振动加速度信号。然后,通过递推最小二乘算法对悬架的弹簧刚度和减震器阻尼系数进行初步识别。在此基础上,进一步采用Rao-Blackwellized粒子滤波算法对初步辨识结果进行二次优化。最后,结合实测的车辆硬点坐标和通过辨识得到的悬架参数,基于多体动力学原理构建车辆动力学模型,与实际设计参数进行对比,并进行整车动力学仿真以验证辨识参数的准确性。实验结果表明,该方法在识别悬架弹簧刚度和减震器阻尼系数方面具有很高的精度,与真实值的最大偏差仅为2.50%和1.82%。同时,车辆动力学模型的仿真输出与实测载荷谱的均方根误差控制在5%以内。该方法显著提高了悬架系统参数辨识的精确度,是一种高精度的汽车悬架参数在线辨识算法。 展开更多
关键词 递推最小二乘算法 RBPF算法 实车载荷谱 参数辨识
在线阅读 下载PDF
基于改进SVD和LS-Prony的电机转子断条故障诊断 被引量:1
4
作者 贾朱植 康云娟 +2 位作者 祝洪宇 张博 宋向金 《电子测量技术》 北大核心 2025年第3期100-111,共12页
采用电机定子电流信号特征分析诊断转子断条故障时,基频两侧的故障特征频率和幅值是判断故障发生与否和严重程度的重要参数。FFT算法的诊断能力严重依赖于所分析的数据长度,最小二乘Prony分析算法虽然具有短时数据分析能力,但是该方法... 采用电机定子电流信号特征分析诊断转子断条故障时,基频两侧的故障特征频率和幅值是判断故障发生与否和严重程度的重要参数。FFT算法的诊断能力严重依赖于所分析的数据长度,最小二乘Prony分析算法虽然具有短时数据分析能力,但是该方法对噪声异常敏感,当电机低频低负载运行时同样存在故障特征提取能力不足和诊断失效的问题。为解决上述问题,提出改进奇异值分解和LS-PA算法相结合的转子断条故障诊断方法。首先采用按列截断方式重构奇异值分解矩阵,根据奇异值差商确定有效阶次,进而对定子电流信号进行预处理以适度抑制噪声,然后运用LS-PA算法对预处理后的信号做故障特征识别和诊断。有限元仿真和实验分析结果表明,所提出的方法能有效抑制电流信号噪声,具有短时数据高分辨率的诊断性能,在工频和变频供电时均能实现电机轻载到满载全工况稳定运行条件下的转子断条故障诊断,诊断性能高于经典的FFT方法。 展开更多
关键词 故障诊断 奇异值分解 最小二乘Prony算法 电机定子电流信号特征分析
在线阅读 下载PDF
基于KPCA-IPOA-LSSVM的变压器电热故障诊断 被引量:1
5
作者 陈尧 周连杰 《南方电网技术》 北大核心 2025年第1期20-29,共10页
为解决油浸式变压器故障诊断准确率低的问题,提出了一种核主成分分析(kernel principal component analysis,KPCA)与改进鹈鹕优化算法(improved pelican optimization algorithm,IPOA)优化最小二乘支持向量机(least squares support vec... 为解决油浸式变压器故障诊断准确率低的问题,提出了一种核主成分分析(kernel principal component analysis,KPCA)与改进鹈鹕优化算法(improved pelican optimization algorithm,IPOA)优化最小二乘支持向量机(least squares support vector machine,LSSVM)的变压器故障诊断方法。首先用KPCA对多维变压器故障数据进行特征提取,降低计算复杂度。其次引入Logistic混沌映射、自适应权重策略和透镜成像反向学习策略对鹈鹕优化算法(pelican optimization algorithm,POA)进行改进。最后建立了KPCA-IPOA-LSSVM故障诊断模型,诊断精度为94.24%,与PCA-IPOA-SVM、KPCA-IPOA-SVM、KPCA-WOA-LSSVM和KPCA-POA-LSSVM故障诊断模型进行对比,准确率分别提升了18.31%、11.53%、11.87%、7.46%。结果表明,所提出的变压器故障诊断模型有效提高了故障诊断的准确率,证明了该诊断模型具有一定的理论研究和实际工程应用意义。 展开更多
关键词 变压器 鹈鹕优化算法 最小二乘支持向量机 核主成分分析 故障诊断
在线阅读 下载PDF
基于FFRLS的锂离子电池全工况等效电路模型 被引量:1
6
作者 孙中旺 刘冲 +3 位作者 刘春桥 江新天 靖知川 吕龙 《电池》 北大核心 2025年第1期78-84,共7页
在锂离子电池等多时间尺度系统中,最小二乘(LS)算法的应用面临模型参数辨识精度低和工况适应性差等挑战。以一阶等效电路模型为研究对象,采用基于遗忘因子的递推最小二乘(FFRLS)算法,用于精确估计电池内阻相关参数。针对恒流工况下在线... 在锂离子电池等多时间尺度系统中,最小二乘(LS)算法的应用面临模型参数辨识精度低和工况适应性差等挑战。以一阶等效电路模型为研究对象,采用基于遗忘因子的递推最小二乘(FFRLS)算法,用于精确估计电池内阻相关参数。针对恒流工况下在线辨识精度不足、离线辨识精度较高的特点,提出全工况自适应输出等效电路模型,以提升的模型精度。基于实际工况的仿真实验表明:全工况等效电路模型较单一恒流工况精度更高。全工况模型结合了离线和在线辨识算法,具有更小的误差,为0.68%。 展开更多
关键词 锂离子电池 等效电池模型 最小二乘(ls)算法 全工况模型
在线阅读 下载PDF
基于IPSO-LSSVR算法的变电站工程造价预测方法 被引量:1
7
作者 王林峰 刘云 +2 位作者 亓彦珣 周波 李洁 《沈阳工业大学学报》 北大核心 2025年第2期168-175,共8页
【目的】电网建设项目中变电站工程造价的预测一直是影响项目成本管理的重要问题。然而,当前常用的变电站造价预测方法存在预测精度不足、计算效率低等问题,制约了预测模型在实际工程中的应用。为提高预测的准确性和计算效率,提出了一... 【目的】电网建设项目中变电站工程造价的预测一直是影响项目成本管理的重要问题。然而,当前常用的变电站造价预测方法存在预测精度不足、计算效率低等问题,制约了预测模型在实际工程中的应用。为提高预测的准确性和计算效率,提出了一种基于改进的粒子群优化(IPSO)算法和最小二乘支持向量回归(LSSVR)算法的变电站工程造价预测方法。【方法】考虑到常规变电站与智能变电站在设备、技术和运维上的差异,通过分析这两类变电站的特点,对相关数据进行了有针对性的预处理,以去除噪声数据,填补缺失值,并将有效信息转换为特征向量,作为LSSVR模型的输入。为避免传统粒子群(PSO)算法易陷入局部最优解的问题,引入了一种混合调节策略,对PSO算法的惯性权重和学习因子进行优化,使得优化过程更加稳定并具备较强的全局搜索能力。通过该策略IPSO算法可以在全局搜索和局部搜索之间实现更好的平衡。利用IPSO算法优化LSSVR模型参数,并建立变电站工程造价预测模型。【结果】通过与其他预测模型进行比较分析得出结论,所提出的IPSO-LSSVR算法在预测精度上具有明显优势。具体来说,基于该模型的预测误差显著低于其他方法,可以将偏差控制在5%以内。改进后的粒子群优化算法能够有效避免陷入局部最优,确保了LSSVR模型在各种情况下都能提供较为准确的预测结果。【结论】基于IPSO优化LSSVR算法的变电站工程造价预测方法,克服了传统预测方法在预测精度和计算效率上的不足。在实际应用中,该方法能够为电网建设项目的成本管理提供更加准确的预测依据,从而有助于项目预算的合理制定和资源的有效配置。 展开更多
关键词 变电站 工程造价 造价预测 粒子群算法 最小二乘支持向量回归 预测精度 运算效率 混合调节策略
在线阅读 下载PDF
Improved adaptive pruning algorithm for least squares support vector regression 被引量:4
8
作者 Runpeng Gao Ye San 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期438-444,共7页
As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorit... As the solutions of the least squares support vector regression machine (LS-SVRM) are not sparse, it leads to slow prediction speed and limits its applications. The defects of the ex- isting adaptive pruning algorithm for LS-SVRM are that the training speed is slow, and the generalization performance is not satis- factory, especially for large scale problems. Hence an improved algorithm is proposed. In order to accelerate the training speed, the pruned data point and fast leave-one-out error are employed to validate the temporary model obtained after decremental learning. The novel objective function in the termination condition which in- volves the whole constraints generated by all training data points and three pruning strategies are employed to improve the generali- zation performance. The effectiveness of the proposed algorithm is tested on six benchmark datasets. The sparse LS-SVRM model has a faster training speed and better generalization performance. 展开更多
关键词 least squares support vector regression machine (ls- SVRM) PRUNING leave-one-out (LOO) error incremental learning decremental learning.
在线阅读 下载PDF
基于IWOA-LSSVM的矿用差压式流量计误差补偿方法
9
作者 王伟峰 李煜 +3 位作者 田丰 李卓洋 白玉 李寒冰 《西安科技大学学报》 北大核心 2025年第4期726-734,共9页
针对矿用差压式流量计易受井下瓦斯抽采管道中温度、湿度、压力等因素的干扰,导致测量误差较大的问题,提出了一种基于改进的鲸鱼算法(IWOA)优化最小二乘支持向量机(LSSVM)的误差补偿方法。采用鲸鱼算法(WOA)优化LSSVM模型的核函数参数... 针对矿用差压式流量计易受井下瓦斯抽采管道中温度、湿度、压力等因素的干扰,导致测量误差较大的问题,提出了一种基于改进的鲸鱼算法(IWOA)优化最小二乘支持向量机(LSSVM)的误差补偿方法。采用鲸鱼算法(WOA)优化LSSVM模型的核函数参数和惩罚因子,引入Tent混沌映射、随机性学习方法以及自适应权重,构建IWOA-LSSVM误差补偿模型;搭建试验模拟测试平台,模拟抽采管道环境,应用Matlab对监测数据进行仿真,对比BP神经网络、PSO-LSSVM算法、GWO-LSSVM算法的误差补偿结果。结果表明:相较于原始测量值,BP神经网络使差压式流量计平均百分比误差从7.40%下降到1.13%,PSO-LSSVM算法使平均百分比误差下降到1.05%,GWO-LSSVM算法使平均百分比误差下降到0.47%,而IWOA-LSSVM算法可以使百分比误差下降到0.23%。IWOA-LSSVM算法能有效消除环境因素对流量计输出结果的影响,提高了矿用差压式流量计的可靠性与检测精度。 展开更多
关键词 差压式流量计 误差补偿 鲸鱼算法 最小二乘支持向量机 瓦斯抽采
在线阅读 下载PDF
一种用于气候室相对湿度预测的MSPOA-LSSVM模型研究
10
作者 王一诺 郑焕祺 +1 位作者 杨胜坤 周玉成 《重庆理工大学学报(自然科学)》 北大核心 2025年第2期97-105,共9页
针对通风条件下,气候室相对湿度控制精度对甲醛检测准确性的影响,提出一种相对湿度预测模型。模型选取控温水箱、控制露点水箱和气候室相对湿度等7个数据采集点的数据作为输入和输出。基于多策略改进鹈鹕优化算法和最小二乘支持向量机构... 针对通风条件下,气候室相对湿度控制精度对甲醛检测准确性的影响,提出一种相对湿度预测模型。模型选取控温水箱、控制露点水箱和气候室相对湿度等7个数据采集点的数据作为输入和输出。基于多策略改进鹈鹕优化算法和最小二乘支持向量机构建MSPOA-LSSVM相对湿度预测模型。针对鹈鹕优化算法寻优能力不足的问题,使用随机对立学习初始化种群,引入融合鲸鱼优化的正余弦策略和动态权重因子策略,提高算法性能。将MSPOA-LSSVM模型与4种机器学习模型进行对比实验,结果表明,MSPOA-LSSVM模型决定系数、均方根误差分别为0.964和0.07389,均低于其他模型,可为解决相对湿度控制精度不足问题提供参考。 展开更多
关键词 气候室 相对湿度预测 鹈鹕优化算法 最小二乘支持向量机
在线阅读 下载PDF
近红外光谱测定黄水酸度的iPLS-iNSGA-III联合特征筛选方法
11
作者 张贵宇 向星睿 +3 位作者 张磊 王怡博 严俊 张云龙 《食品科学》 北大核心 2025年第17期283-291,共9页
针对传统化学方法测定黄水酸度存在费时费力的困境,利用近红外光谱技术和偏最小二乘回归(partial least squares regression,PLSR)算法实现发酵过程黄水酸度的快速无损检测。采用Savitzky-Golay卷积平滑对黄水原始光谱进行预处理削弱噪... 针对传统化学方法测定黄水酸度存在费时费力的困境,利用近红外光谱技术和偏最小二乘回归(partial least squares regression,PLSR)算法实现发酵过程黄水酸度的快速无损检测。采用Savitzky-Golay卷积平滑对黄水原始光谱进行预处理削弱噪声影响后,为简化模型和提高预测性能,采用波段和波点筛选方法联合筛选黄水光谱特征波数。先通过区间偏最小二乘(interval partial least squares,iPLS)、联合区间偏最小二乘、反向区间偏最小二乘3种波段筛选方法对黄水酸度特征区间进行初步定位,然后引入多目标优化思想,使用基于混沌初始化和自适应变异算子改进的非支配排序遗传算法III(improved non-dominated sorting genetic algorithm III,iNSGA-III)进行二次波点筛选。结果表明,基于iPLS-iNSGA-III筛选的70个特征波数的建立的PLSR模型对黄水酸度预测效果最佳,相较于原始全光谱建模,决定系数R2 p从0.7576提升到0.9309,预测均方根误差从0.8250 mmol/100 g降低到0.4394 mmol/100 g。该研究为白酒发酵副产物黄水酸度的快速、无损检测提供理论参考。 展开更多
关键词 黄水 酸度 近红外光谱 特征筛选 偏最小二乘回归 非支配排序遗传算法
在线阅读 下载PDF
采用改进遗传算法优化LS-SVM逆系统的外转子无铁心无轴承永磁同步发电机解耦控制 被引量:7
12
作者 朱熀秋 沈良瑜 《中国电机工程学报》 EI CSCD 北大核心 2024年第5期2037-2046,I0032,共11页
为了实现外转子无铁心无轴承永磁同步发电机(outer rotor coreless bearingless permanent magnet synchronous generator,ORC-BPMSG)的精确控制,提出一种基于改进遗传算法(improved genetic algorithm,IGA)优化最小二乘支持向量机(leas... 为了实现外转子无铁心无轴承永磁同步发电机(outer rotor coreless bearingless permanent magnet synchronous generator,ORC-BPMSG)的精确控制,提出一种基于改进遗传算法(improved genetic algorithm,IGA)优化最小二乘支持向量机(least square support vector machine,LS-SVM)逆系统的解耦控制策略。首先,基于ORC-BPMSG的结构及工作原理,推导其数学模型,并分析其可逆性。其次,建立LS-SVM回归方程,并采用IGA优化LS-SVM的性能参数,从而训练得到逆系统。然后,将逆系统与原系统串接,形成伪线性系统,实现了ORC-BPMSG的线性化和解耦。最后,将提出的控制方法与传统LS-SVM逆系统控制方法进行对比仿真和实验。仿真和实验结果表明:所提出的控制策略可以较好地实现ORC-BPMSG输出电压和悬浮力、以及悬浮力之间的解耦控制。 展开更多
关键词 外转子无铁心无轴承永磁同步发电机 最小二乘支持向量机 逆系统 改进遗传算法 解耦控制
在线阅读 下载PDF
基于DBN和BES-LSSVM的矿用压风机异常状态识别方法 被引量:2
13
作者 李敬兆 王克定 +2 位作者 王国锋 郑鑫 石晴 《流体机械》 CSCD 北大核心 2024年第3期89-97,共9页
针对矿用压风机这类分布式系统的异常类别复杂、识别精度低等问题,提出了一种基于深度置信网络(DBN)和最小二乘支持向量机(LSSVM)的异常状态识别方法。首先,分析压风机组成系统及其运行机理,确定常见的异常状态类型;其次,采用DBN无监督... 针对矿用压风机这类分布式系统的异常类别复杂、识别精度低等问题,提出了一种基于深度置信网络(DBN)和最小二乘支持向量机(LSSVM)的异常状态识别方法。首先,分析压风机组成系统及其运行机理,确定常见的异常状态类型;其次,采用DBN无监督学习方式充分挖掘监测数据中异常特征并快速提取;然后,利用秃鹰搜索算法(BES)优化LSSVM的超参数,构建最优的BES-LSSVM分类模型;最后,将DBN提取的异常特征作为BES-LSSVM模型的输入,对矿用压风机异常状态进行识别。试验验证与对比分析结果表明,相较于GA,PSO,GWO算法,BES算法的求解精度和收敛速度均有所提高,同时DBN-BES-LSSVM模型在测试集上平均识别精度达到94.65%,较PCA-LSSVM模型、DBN模型和DBN-LSSVM模型的识别精度分别提高了10.53%,5.84%和3.76%,验证了DBN-BES-LSSVM模型在矿用压风机异常特征提取以及特征识别方面的优越性。 展开更多
关键词 矿用压风机 深度置信网络 秃鹰搜索算法 最小二乘支持向量机 异常识别
在线阅读 下载PDF
基于VMD-LILGWO-LSSVM短期风电功率预测 被引量:2
14
作者 王瑞 李虹锐 +1 位作者 逯静 卜旭辉 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第2期128-136,共9页
目的为了减小风电功率并入国家电网时产生的频率波动,提高风电功率预测精度,方法提出一种结合变分模态分解(VMD)、改进灰狼算法(LILGWO)和最小二乘支持向量机(LSSVM)的风电功率短期预测方法。首先通过VMD方法将风电功率序列分解重构成3... 目的为了减小风电功率并入国家电网时产生的频率波动,提高风电功率预测精度,方法提出一种结合变分模态分解(VMD)、改进灰狼算法(LILGWO)和最小二乘支持向量机(LSSVM)的风电功率短期预测方法。首先通过VMD方法将风电功率序列分解重构成3个复杂程度性不同的模态分量,降低风电功率的波动性;其次使用LSSVM挖掘各分量的特征信息,对各分量分别进行预测,针对LSSVM模型中重要参数的选取对预测精度影响较大问题,引入LILGWO对参数进行寻优;最后将各分量预测结果叠加重构,得到最终预测风电功率。结果以宁夏回族自治区某地区风电站实际数据为例,对未来三天分别进行预测取平均值,本文方法的预测平均绝对误差(mean absolute error,MAE)为2.7068 kW,均方根误差(root mean square error,RMSE)为2.0211,拟合程度决定系数(R-Square,R^(2))为0.9769,与对比方法3~6相比,RMSE分别降低了40.93%,25.21%,14.7%,6.24%;MAE分别降低了42.34%,28.04%,16.97%,7.77%;R^(2)分别提升了4.21%,1.78%,0.82%,0.28%。预测时长方面,BP和LSSVM平均训练时间分别是10,138 s,虽然LSSVM预测时间较长但效果最好,采用PSO、GWO、LILGWO对LSSVM进行寻优后训练时间分别平均缩短了39,44,58 s。结论仿真验证了所提方法在短期风电功率预测方面的有效性。 展开更多
关键词 风电功率 短期预测 变分模态分解 近似熵 改进灰狼算法 最小二乘支持向量机
在线阅读 下载PDF
基于特征选择和ICOA-LSSVM的变压器故障诊断 被引量:3
15
作者 向小民 盛刘宇 +1 位作者 刘谦 刘闯 《电气工程学报》 CSCD 北大核心 2024年第4期397-406,共10页
为提高变压器故障诊断的准确率,提出一种基于特征选择和改进黑猩猩算法(Improved chimp optimization algorithm,ICOA)优化最小二乘支持向量机(Least squares support vector machine,LSSVM)的变压器故障诊断方法。采用F-score和信息增... 为提高变压器故障诊断的准确率,提出一种基于特征选择和改进黑猩猩算法(Improved chimp optimization algorithm,ICOA)优化最小二乘支持向量机(Least squares support vector machine,LSSVM)的变压器故障诊断方法。采用F-score和信息增益两种方法对故障特征进行筛选,根据特征选择结果确定变压器故障诊断模型的输入量。采用ICOA算法对LSSVM的惩罚因子和核参数进行优化,建立了基于特征选择和ICOA-LSSVM的变压器故障诊断模型。采用实际变压器故障数据进行算例分析,并与其他变压器故障诊断方法进行对比,结果表明,考虑特征选择的ICOA-LSSVM模型诊断结果的正确率高达95.83%,高于其他方法,验证了所提变压器故障诊断方法的正确性和优越性。 展开更多
关键词 变压器 故障诊断 改进黑猩猩算法 最小二乘支持向量机 特征选择
在线阅读 下载PDF
基于ISSA-HKLSSVM的浮选精矿品位预测方法 被引量:1
16
作者 高云鹏 罗芸 +2 位作者 孟茹 张微 赵海利 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期111-120,共10页
针对浮选过程变量滞后、耦合特征及建模样本数量少所导致精矿品位难以准确预测的问题,提出了一种基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混核最小二乘支持向量机(Hybrid Kernel Least Squares Support Vecto... 针对浮选过程变量滞后、耦合特征及建模样本数量少所导致精矿品位难以准确预测的问题,提出了一种基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混核最小二乘支持向量机(Hybrid Kernel Least Squares Support Vector Machine,HKLSSVM)的浮选过程精矿品位预测方法.首先采集浮选现场载流X荧光品位分析仪数据作为建模变量并进行预处理,建立基于最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)的预测模型,以此构建新型混合核函数,将输入空间映射至高维特征空间,再引入改进麻雀搜索算法对模型参数进行优化,提出基于ISSA-HKLSSVM方法实现精矿品位预测,最后开发基于LabVIEW的浮选精矿品位预测系统对本文提出方法实际验证.实验结果表明,本文提出方法对于浮选过程小样本建模具有良好拟合能力,相比现有方法提高了预测准确率,可实现精矿品位的准确在线预测,为浮选过程的智能调控提供实时可靠的精矿品位反馈信息. 展开更多
关键词 浮选 精矿品位 最小二乘支持向量机 改进麻雀搜索算法 预测模型
在线阅读 下载PDF
基于IPOA-LSSVM模型的高压直流输电线路故障定位 被引量:1
17
作者 商立群 刘晗 +3 位作者 郝天奇 李钊 李朝彪 邓力文 《南京信息工程大学学报》 CAS 北大核心 2024年第5期667-677,共11页
故障定位在长距离高压直流输电系统中起着至关重要的作用.针对线路衰减系数计算不准和二次波头难以捕捉的问题,提出了一种改进鹈鹕优化算法(IPOA)优化最小二乘支持向量(LSSVM)的故障定位模型.根据行波衰减原理,推导故障距离和线路两端... 故障定位在长距离高压直流输电系统中起着至关重要的作用.针对线路衰减系数计算不准和二次波头难以捕捉的问题,提出了一种改进鹈鹕优化算法(IPOA)优化最小二乘支持向量(LSSVM)的故障定位模型.根据行波衰减原理,推导故障距离和线路两端线模分量模极大值比的计算公式,发现二者具有非线性关系.使用LSSVM泛化二者之间的关系,将改进后的POA算法对LSSVM的关键参数进行寻优,建立IPOA-LSSVM故障定位模型.通过在两端采集故障信号,对其进行小波变换得到首波头幅值比作为模型的输入量,故障距离作为输出量进行仿真验证.仿真结果表明,该模型不受过渡电阻和故障类型的影响,能够可靠准确地定位. 展开更多
关键词 故障定位 高压直流输电系统 首波头幅值比 改进鹈鹕优化算法 最小二乘支持向量机
在线阅读 下载PDF
基于误差因子的改进WLS超宽带定位算法
18
作者 刘林 宋雨昊 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第9期1235-1243,1316,共10页
为提高非视距场景下超宽带(ultra‑wideband,UWB)定位精度,本文提出一种基于误差因子的改进加权最小二乘(weighted least square,WLS)算法.该算法利用测距值和实时信道冲激响应特征训练1维卷积神经网络,实现误差因子的准确预测;基于预测... 为提高非视距场景下超宽带(ultra‑wideband,UWB)定位精度,本文提出一种基于误差因子的改进加权最小二乘(weighted least square,WLS)算法.该算法利用测距值和实时信道冲激响应特征训练1维卷积神经网络,实现误差因子的准确预测;基于预测得到的误差因子设计改进WLS算法的加权矩阵,赋予不同基站合理的权重,以改善非视距场景下UWB定位性能.通过实测采集静态和动态定位数据对改进WLS算法进行性能验证.实验结果表明:视距场景下,改进WLS算法与最小二乘(least square,LS)算法、WLS算法定位性能相近;非视距场景下,改进WLS算法明显优于LS算法、WLS算法,能够有效抑制非视距误差. 展开更多
关键词 超宽带 到达时间 非视距 1维卷积神经网络 改进加权最小二乘算法
在线阅读 下载PDF
基于FFRLS和ASR-UKF滤波算法的锂电池SOC估计 被引量:2
19
作者 邓丹 刘胜永 +2 位作者 王顺利 刘鹏辉 胡聪 《电源技术》 CAS 北大核心 2024年第2期299-305,共7页
锂电池在工作过程中,其内部参数易受多种因素影响,为提高锂电池在复杂环境下荷电状态(SOC)估计精度,以二阶戴维宁(Thevenin)等效模型为基础,结合遗忘因子递推最小二乘法(FFRLS)对模型参数进行在线辨识。针对传统卡尔曼滤波算法高度非线... 锂电池在工作过程中,其内部参数易受多种因素影响,为提高锂电池在复杂环境下荷电状态(SOC)估计精度,以二阶戴维宁(Thevenin)等效模型为基础,结合遗忘因子递推最小二乘法(FFRLS)对模型参数进行在线辨识。针对传统卡尔曼滤波算法高度非线性及系统噪声不确定性等缺点,提出了一种自适应平方根无迹卡尔曼滤波(ASR-UKF)算法,该算法利用平方根算法处理均值和协方差,确保了状态协方差的半正定性和稳定性,并引入自适应滤波算法对噪声进行实时修正,消除了系统时变噪声影响。结果表明,FFRLS能有效解决数据饱和及算法矩阵计算量大的问题,等效模型精度高达98%。在混合动力脉冲特性(HPPC)测试和北京公交动态测试工况(BBDST)下,ASR-UKF算法SOC估计最大误差分别为3.264%和0.572%,具备更好的跟踪效果,验证了改进算法良好的收敛性与自适应性。 展开更多
关键词 荷电状态 二阶Thevenin模型 遗忘因子递推最小二乘法 自适应平方根无迹卡尔曼滤波算法
在线阅读 下载PDF
基于MCC-GAPLS-PLSR的辣椒叶绿素含量高光谱定量反演 被引量:1
20
作者 王宇 汪泓 +4 位作者 肖玖军 邢丹 李可相 张永亮 岳延滨 《江苏农业学报》 CSCD 北大核心 2024年第5期865-873,共9页
为了准确监测辣椒生长,本研究对辣椒冠层光谱反射率进行对数处理、倒数处理、倒数的对数处理、连续统去除处理、一阶微分处理、二阶微分处理,并与SPAD值进行相关性分析,用最大相关系数法(MCC)选取相关性较好的特征波段生成特征波段数据... 为了准确监测辣椒生长,本研究对辣椒冠层光谱反射率进行对数处理、倒数处理、倒数的对数处理、连续统去除处理、一阶微分处理、二阶微分处理,并与SPAD值进行相关性分析,用最大相关系数法(MCC)选取相关性较好的特征波段生成特征波段数据集,再用遗传算法-偏最小二乘法(GAPLS)进行降维得到最优特征波段组合,采用偏最小二乘法(PLSR)、反向传播神经网络(BPNN)、随机森林(RF)和最小二乘支持向量机(LSSVM)4种机器学习算法构建辣椒叶绿素含量反演模型。结果表明,最优波段和对应处理分别为700 nm(原始光谱)、699 nm(对数处理)、713 nm(连续统去除处理)、500 nm(二阶微分处理)、713 nm(二阶微分处理)。GAPLS的降维效果较好,与降维前相比PLSR模型的精度提升率最高,R^(2)、RPD分别提升了82.22%、136.98%,RMSE降低了29.96%。4种模型中,GAPLS降维处理后的PLSR模型的精度最好,R^(2)、RMSE和RPD分别为0.82、1.94、4.55。本研究构建的MCC-GAPLS-PLSR模型具有较好的反演潜力,适用于研究区辣椒叶片叶绿素含量测定,推动辣椒高效种植。 展开更多
关键词 叶绿素含量 辣椒 高光谱 光谱变换 遗传算法-偏最小二乘法
在线阅读 下载PDF
上一页 1 2 141 下一页 到第
使用帮助 返回顶部