期刊文献+
共找到123篇文章
< 1 2 7 >
每页显示 20 50 100
Fault diagnosis of power-shift steering transmission based on multiple outputs least squares support vector regression 被引量:2
1
作者 张英锋 马彪 +2 位作者 房京 张海岭 范昱珩 《Journal of Beijing Institute of Technology》 EI CAS 2011年第2期199-204,共6页
A method of multiple outputs least squares support vector regression (LS-SVR) was developed and described in detail, with the radial basis function (RBF) as the kernel function. The method was applied to predict t... A method of multiple outputs least squares support vector regression (LS-SVR) was developed and described in detail, with the radial basis function (RBF) as the kernel function. The method was applied to predict the future state of the power-shift steering transmission (PSST). A prediction model of PSST was gotten with multiple outputs LS-SVR. The model performance was greatly influenced by the penalty parameter γ and kernel parameter σ2 which were optimized using cross validation method. The training and prediction of the model were done with spectrometric oil analysis data. The predictive and actual values were compared and a fault in the second PSST was found. The research proved that this method had good accuracy in PSST fault prediction, and any possible problem in PSST could be found through a comparative analysis. 展开更多
关键词 least squares support vector regression(LS-SVR) fault diagnosis power-shift steering transmission (PSST)
在线阅读 下载PDF
Improved Scheme for Fast Approximation to Least Squares Support Vector Regression
2
作者 张宇宸 赵永平 +3 位作者 宋成俊 侯宽新 脱金奎 叶小军 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第4期413-419,共7页
The solution of normal least squares support vector regression(LSSVR)is lack of sparseness,which limits the real-time and hampers the wide applications to a certain degree.To overcome this obstacle,a scheme,named I2FS... The solution of normal least squares support vector regression(LSSVR)is lack of sparseness,which limits the real-time and hampers the wide applications to a certain degree.To overcome this obstacle,a scheme,named I2FSA-LSSVR,is proposed.Compared with the previously approximate algorithms,it not only adopts the partial reduction strategy but considers the influence between the previously selected support vectors and the willselected support vector during the process of computing the supporting weights.As a result,I2FSA-LSSVR reduces the number of support vectors and enhances the real-time.To confirm the feasibility and effectiveness of the proposed algorithm,experiments on benchmark data sets are conducted,whose results support the presented I2FSA-LSSVR. 展开更多
关键词 support vector regression kernel method least squares SPARSENESS
在线阅读 下载PDF
基于近红外光谱技术结合ARO-LSSVR的天麻中有效成分含量快速检测 被引量:1
3
作者 李珊珊 张付杰 +5 位作者 李丽霞 张浩 段星桅 史磊 崔秀明 李小青 《食品科学》 EI CAS CSCD 北大核心 2024年第4期207-213,共7页
为实现对天麻中天麻素和对羟基苯甲醇含量的快速、无损检测,以云南昭通乌天麻为实验对象,采集900~1 700 nm波长范围内的光谱数据。首先,采用卷积平滑和标准正态变量变换进行光谱数据预处理,其次通过竞争性自适应重加权采样法(competitiv... 为实现对天麻中天麻素和对羟基苯甲醇含量的快速、无损检测,以云南昭通乌天麻为实验对象,采集900~1 700 nm波长范围内的光谱数据。首先,采用卷积平滑和标准正态变量变换进行光谱数据预处理,其次通过竞争性自适应重加权采样法(competitive adapative reweighted sampling,CARS)与迭代保留信息变量算法进行特征波长的提取,根据基于特征波长建立最小二乘支持向量回归(least squares support vector machine,LSSVR)模型的结果,选择最佳特征波长提取方法。为了提高模型的准确率,本研究引入人工兔智能算法对LSSVR中的正则化参数γ和核函数密度σ2进行优化,并与粒子群优化算法(particle swarm optimization,PSO)、灰狼优化算法(grey wolf optimizer,GWO)进行对比,评估人工兔优化算法(artificial rabbits optimization,ARO)的优越性。结果表明,ARO算法在寻优速度、寻优能力上优于PSO、GWO;天麻素、对羟基苯甲醇的最佳预测模型均为CARS-AROLSSVR,其Rp2分别为0.969 6和0.957 7,预测均方根误差分别为0.014和0.020。综上,近红外光谱可用于天麻中有效成分的定量检测,本研究可为天麻快速检测装置的研发提供理论依据。 展开更多
关键词 近红外光谱 天麻 最小二乘支持向量回归 人工兔优化算法
在线阅读 下载PDF
基于GA-LSSVR模型的路网短时交通流预测研究 被引量:19
4
作者 陈小波 刘祥 +3 位作者 韦中杰 梁军 蔡英凤 陈龙 《交通运输系统工程与信息》 EI CSCD 北大核心 2017年第1期60-66,81,共8页
目前,很多短时交通流预测方法仅利用某一路段历史数据的时间相关性或者道路上下游路段的时空相关性进行交通流预测,未充分考虑路网所有路段之间的时空相关性.提出了一种基于稀疏混合遗传算法优化的最小二乘支持向量回归(LSSVR)模型,并... 目前,很多短时交通流预测方法仅利用某一路段历史数据的时间相关性或者道路上下游路段的时空相关性进行交通流预测,未充分考虑路网所有路段之间的时空相关性.提出了一种基于稀疏混合遗传算法优化的最小二乘支持向量回归(LSSVR)模型,并应用于路网短时交通流预测.该预测模型不仅可以自动优化LSSVR模型参数,而且可以从高维路网交通流数据中选择有助于交通流预测的变量子集.实验结果表明,与LSSVR模型相比,所提方法具有更好的预测能力;而且,少量时空变量被选择出来构建预测模型,极大减少了信息冗余,改进了模型可解释性. 展开更多
关键词 智能交通 变量选择 稀疏混合遗传算法 短时交通流预测 最小二乘支持向量回归
在线阅读 下载PDF
基于ANN和LSSVR的造纸废水处理过程软测量建模 被引量:12
5
作者 汪瑶 徐亮 +3 位作者 殷文志 胡慕伊 黄明智 刘鸿斌 《中国造纸学报》 CAS CSCD 北大核心 2017年第1期50-54,共5页
针对造纸废水处理系统的时变性、非线性和复杂性等特点,将人工神经网络(ANN)和最小二乘支持向量回归(LSSVR)分别用于造纸废水处理过程中的软测量建模,实现造纸废水处理过程中出水化学需氧量和出水悬浮固形物浓度的预测。ANN采用误差反... 针对造纸废水处理系统的时变性、非线性和复杂性等特点,将人工神经网络(ANN)和最小二乘支持向量回归(LSSVR)分别用于造纸废水处理过程中的软测量建模,实现造纸废水处理过程中出水化学需氧量和出水悬浮固形物浓度的预测。ANN采用误差反向传播算法建模,LSSVR通过粒子群优化算法进行模型参数优化。结果表明,与ANN模型预测结果相比,LSSVR模型预测结果的均方根误差降低了50%以上,相关系数提高了近10%,表明LSSVR模型在造纸废水处理过程中的预测精度高于ANN模型。 展开更多
关键词 人工神经网络 最小二乘支持向量回归 造纸废水处理 软测量建模 粒子群优化算法
在线阅读 下载PDF
基于油液光谱LSSVR-AR模型的发动机故障预测 被引量:4
6
作者 徐超 张培林 +2 位作者 任国全 李兵 吴定海 《内燃机学报》 EI CAS CSCD 北大核心 2010年第2期160-164,共5页
针对传统油液光谱数据预测模型精度有限的不足,提出了一种基于最小二乘支持向量回归(LSSVR)与AR模型相结合的非平稳时间序列建模方法(LSSVR-AR),并应用于某型履带车辆发动机油液光谱数据及故障的预测。首先对非平稳时间序列进行最小二... 针对传统油液光谱数据预测模型精度有限的不足,提出了一种基于最小二乘支持向量回归(LSSVR)与AR模型相结合的非平稳时间序列建模方法(LSSVR-AR),并应用于某型履带车辆发动机油液光谱数据及故障的预测。首先对非平稳时间序列进行最小二乘支持向量回归,得到非平稳时间序列的趋势项及剔除趋势项后的随机项;然后对随机项建立AR模型并与趋势项的LSSVR模型组合,得到非平稳时间序列模型;最后用所建模型对油液光谱数据及发动机故障进行预测。用所提建模方法对Fe、Cu、Pb、Si光谱数据预测的平均绝对百分比误差分别为1.987%、2.889%、2.343%、6.860%,明显低于其他模型。实例证明,所提模型能对发动机故障进行准确预测。 展开更多
关键词 最小二乘支持向量回归 AR模型 非平稳时间序列建模 油液光谱数据预测 故障预测
在线阅读 下载PDF
基于主成分降维的海面散射系数快速预测方法
7
作者 刘悦 董春雷 +1 位作者 孟肖 郭立新 《电波科学学报》 北大核心 2025年第1期21-28,共8页
海面电磁散射特性与海浪参数、雷达参数等多种影响因素存在复杂的依赖关系,传统大场景海面电磁散射预测模型在面临多参数高维度映射时容易出现过拟合问题,选择合适的降维方法和模型参数是提高模型性能的有效手段。本文提出了一种基于主... 海面电磁散射特性与海浪参数、雷达参数等多种影响因素存在复杂的依赖关系,传统大场景海面电磁散射预测模型在面临多参数高维度映射时容易出现过拟合问题,选择合适的降维方法和模型参数是提高模型性能的有效手段。本文提出了一种基于主成分分析(principal components analysis,PCA)降维的海面电磁散射快速预测方法。首先,利用文氏海谱和海面电磁散射模型构建后向散射系数仿真数据集;然后,引入PCA法降低仿真参数维度,提取主要特征;最后,基于最小二乘支持向量回归机(least squares support vector regression,LSSVR)建立非线性回归模型,输入降维数据进行预测,并评估预测结果的精度。通过对比不同降维比例的预测结果,分析了主成分降维对模型性能的影响。结果表明,对仿真参数进行适当降维能够显著增加模型精度,提升模型的解释能力。当降维比例为25%左右时模型精度达到最优,当降维比例大于40%时模型精度显著下降,不利于海面电磁散射预测。 展开更多
关键词 主成分分析(PCA) 海面电磁散射预测 最小二乘支持向量回归机(lssvr) 半确定性面元法 参数降维
在线阅读 下载PDF
消除WSN目标功率影响的信号强度差LSSVR定位法 被引量:5
8
作者 张晓平 刘桂雄 何学文 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2009年第12期1414-1419,共6页
针对目标发射功率变化下的无线传感器网络(WSN)目标定位问题,分析了无线信道衰减特性,探讨目标功率无关的信号强度差特征提取方法,结合WSN信息交换与处理过程,提出能消除WSN目标功率变化影响的信号强度差LSSVR建模定位方法(TL—L... 针对目标发射功率变化下的无线传感器网络(WSN)目标定位问题,分析了无线信道衰减特性,探讨目标功率无关的信号强度差特征提取方法,结合WSN信息交换与处理过程,提出能消除WSN目标功率变化影响的信号强度差LSSVR建模定位方法(TL—LMSD),该方法利用不同探测节点平均信号强度差构造特征向量,通过LSSVR回归建模获得表征特征向量与目标坐标映射关系的LSSVR模型,将各节点目标信号强度测量值的差值所构造特征向量输入LSSVR模型可实现目标定位.基于CC2430无线传感网络实验平台证明TL-LMSD方法目标定位均方根误差RMSE比MLE方法可减小29%~37%;TL—LMSD方法在LSSVR建模、无需重新建模2种情况下的目标定位耗时分别约为0.4s、0.04s.这表明TL-LMSD方法能显著减小信号强度值变化对目标定位结果的影响,提高目标定位准确度,并具有较好的实时性能. 展开更多
关键词 无线传感器网络 目标定位 信号强度 最小二乘支持向量回归机
在线阅读 下载PDF
基于RSSI高斯滤波的LSSVR无线传感网络定位算法 被引量:6
9
作者 钟阳晶 梁茹冰 黄小虎 《现代电子技术》 北大核心 2017年第11期6-9,13,共5页
为了降低基于接收信号强度指示(RSSI)测距误差对节点定位的影响,解决RSSI测距定位误差较大的问题,提出基于RSSI高斯滤波的最小二乘支持向量回归机LSSVR定位算法(LSSVR-GF-RSSI)。LSSVR-GF-RSSI算法先利用高斯函数滤除误差较大的RSSI值,... 为了降低基于接收信号强度指示(RSSI)测距误差对节点定位的影响,解决RSSI测距定位误差较大的问题,提出基于RSSI高斯滤波的最小二乘支持向量回归机LSSVR定位算法(LSSVR-GF-RSSI)。LSSVR-GF-RSSI算法先利用高斯函数滤除误差较大的RSSI值,筛选出较准确的RSSI值,再依据这些值计算未知节点离锚节点间的距离。将这些距离作为LSSVR的输入,建立基于RSSI测距的LSSVR定位算法模型,最终,估计未知节点的位置。仿真结果表明,提出的LSSVR-GF-RSSI算法能够有效地降低均方定位误差,比传统的基于RSSI的LSSVR定位算法减少了约12%~20%。 展开更多
关键词 接收信号强度 最小二乘支持向量回归机 高斯函数 定位 无线传感网络
在线阅读 下载PDF
基于GA-LSSVR算法的回采工作面瓦斯涌出量预测 被引量:1
10
作者 曹庆奎 商娜欣 《河北工程大学学报(自然科学版)》 CAS 2014年第3期90-94,共5页
针对回采工作面瓦斯涌出量问题的小样本、非线性、影响因素关系复杂等特点,采用遗传-最小二乘支持向量回归算法对瓦斯涌出量进行预测,利用定量方法进行分析,避免了定性分析的局限性,有效提高了预测的精度。该模型首先利用遗传算法对最... 针对回采工作面瓦斯涌出量问题的小样本、非线性、影响因素关系复杂等特点,采用遗传-最小二乘支持向量回归算法对瓦斯涌出量进行预测,利用定量方法进行分析,避免了定性分析的局限性,有效提高了预测的精度。该模型首先利用遗传算法对最小二乘支持向量回归机中的参数进行训练和优化,然后运用遗传-最小二乘支持向量回归模型对测试样本进行了回采工作面瓦斯涌出量测试。测试结果表明:与支持向量回归机以及最小二乘支持向量回归机的预测值相比,遗传-最小二乘支持向量回归的回采工作面瓦斯涌出量预测可靠性和精确性更高。 展开更多
关键词 瓦斯涌出量 回采工作面 预测 最小二乘支持向量回归机 遗传算法
在线阅读 下载PDF
基于RSSI和LSSVR的WSN移动节点三维定位系统 被引量:2
11
作者 张烈平 吴俊康 +1 位作者 王政忠 杨振宇 《现代电子技术》 2021年第16期45-50,共6页
文中基于接收信号强度指示测距方法(RSSI)和最小二乘支持向量回归机(LSSVR)定位算法,给出了一种无线传感器网络移动节点三维定位系统设计方法。文中首先介绍了RSSI测距原理和LSSVR移动节点三维定位原理。接着给出了由CC2530节点、数据... 文中基于接收信号强度指示测距方法(RSSI)和最小二乘支持向量回归机(LSSVR)定位算法,给出了一种无线传感器网络移动节点三维定位系统设计方法。文中首先介绍了RSSI测距原理和LSSVR移动节点三维定位原理。接着给出了由CC2530节点、数据处理计算机以及安装有未知节点的遥控履带车组成的硬件架构。同时,给出了采用C#.NET、Matlab和Javascript联合开发技术的定位系统组网方法、节点软件实现流程。最后,通过研制的定位系统进行移动节点定位测试实验。实验结果表明,定位系统能够对20 cm/s和40 cm/s速度下移动未知节点进行定位,平均定位误差分别为14.62%和15.55%,具有较高定位精度,可以满足WSN移动节点三维定位的实际应用需求。 展开更多
关键词 移动节点定位 三维定位系统 WSN RSSI lssvr 硬件架构
在线阅读 下载PDF
基于IPOA-SVR模型的边坡安全系数预测
12
作者 张佳琳 王孝东 +4 位作者 吴雅菡 水宽 张玉 程玥淞 杜青文 《有色金属(矿山部分)》 2025年第1期115-123,共9页
安全系数是用来评估边坡稳定性的重要指标之一,复杂的边坡系统导致安全系数预测存在不确定性。因此,为了获得更加可靠的安全系数,同时解决鹈鹕算法(POA)随着迭代次数的增加易陷入局部最优的缺点,提出了一种融合多策略的鹈鹕算法(IPOA)... 安全系数是用来评估边坡稳定性的重要指标之一,复杂的边坡系统导致安全系数预测存在不确定性。因此,为了获得更加可靠的安全系数,同时解决鹈鹕算法(POA)随着迭代次数的增加易陷入局部最优的缺点,提出了一种融合多策略的鹈鹕算法(IPOA)与支持向量机(SVR)结合的回归模型来预测边坡安全系数。首先,融合多策略将原始的鹈鹕算法进行改进;再运用改进的鹈鹕算法与支持向量机结合,选取六个影响因素作为IPOA-SVR模型的输入层指标并对模型进行训练,得到IPOA-SVR边坡稳定性预测模型;最后,分别与KNN、RF和Adaboost模型对比,并计算各个模型在训练集和测试集上的均方误差(MSE),以此来验证IPOA-SVR模型的优越性。实验结果显示:与其他模型相比,IPOA-SVR模型寻优性能强,在测试集上的均方误差为0.030 9、相关系数为0.91,说明本文对POA算法所用策略的有效性,IPOA-SVR模型可以为边坡失稳灾害的相关预测提供坚实的技术基础。 展开更多
关键词 安全系数 鹈鹕算法 支持向量机 边坡稳定性 均方误差
在线阅读 下载PDF
基于非结构化数据的LLE-WOA-LSSVR碳价格组合预测模型 被引量:5
13
作者 周熠烜 陈华友 +1 位作者 周礼刚 朱家明 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2022年第4期570-576,共7页
在传统的组合预测模型中,利用的数据大多为结构化数据,然而在网络环境下,非结构化数据广泛存在,因此充分利用非结构化数据所提供的有效信息是预测中要解决的关键问题之一。针对上述问题,文章构建了基于非结构化数据的局部线性嵌入和鲸... 在传统的组合预测模型中,利用的数据大多为结构化数据,然而在网络环境下,非结构化数据广泛存在,因此充分利用非结构化数据所提供的有效信息是预测中要解决的关键问题之一。针对上述问题,文章构建了基于非结构化数据的局部线性嵌入和鲸鱼优化算法的最小二乘支持向量回归(locally linear embedding-whale optimization algorithm-least squares support vector regression,LLE-WOA-LSSVR)碳价格组合预测模型,通过LLE算法对非结构化的高维数据进行降维处理,并利用LSSVR进行预测。考虑到LSSVR模型中参数的选取会对预测结果产生影响,引入WOA算法优化模型中的参数。碳价格预测的实例结果表明,LLE-WOA-LSSVR预测模型可行且有效。 展开更多
关键词 非结构化数据 局部线性嵌入(LLE)算法 最小二乘支持向量回归(lssvr) 鲸鱼优化算法(WOA) 组合预测
在线阅读 下载PDF
基于CF-EEMD-LSSVR算法的铅冶炼系统温室气体排放的评估与预测 被引量:1
14
作者 罗曦 王洪才 李玉强 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第1期15-21,共7页
利用碳足迹理论建立铅冶炼系统生命周期内各工序的投入产出模型,对单位产品温室气体排放进行评估。针对温室气体排放时间序列的非线性,建立1个基于集合经验模态分解法与最小二乘支持向量回归机相结合的预测模型。集合经验模态分解法首... 利用碳足迹理论建立铅冶炼系统生命周期内各工序的投入产出模型,对单位产品温室气体排放进行评估。针对温室气体排放时间序列的非线性,建立1个基于集合经验模态分解法与最小二乘支持向量回归机相结合的预测模型。集合经验模态分解法首先将温室气体排放时间序列分解成一系列相对比较平稳的本征模函数分量,然后利用最小二乘支持向量回归机对各分量分别预测,最后进行叠加求和,将铅冶炼系统温室气体排放量的预测结果与实际结果进行对比。研究结果表明:预测结果与实际结果均方根误差为2.896 1%,所提出的方法可实现铅冶炼系统温室气体排放的精确评估与预测。 展开更多
关键词 铅冶炼系统 温室气体排放 碳足迹 集合经验模态分解 最小二乘支持向量回归机
在线阅读 下载PDF
基于KF-BA-LSSVR的无线传感器网络节点定位研究 被引量:3
15
作者 束仁义 朱家兵 +2 位作者 沈晓波 蔡俊 夏泐 《重庆科技学院学报(自然科学版)》 CAS 2022年第3期57-61,共5页
为进一步提高基于最小二乘支持向量回归机算法(LSSVR)的无线传感器网络定位精度,提出一种基于蝙蝠算法(BA)的LSSVR定位方法。考虑到目标定位受环境干扰,采用卡尔曼滤波算法来减小测距误差。仿真实验结果表明,在三维空间中,相较于传统LS... 为进一步提高基于最小二乘支持向量回归机算法(LSSVR)的无线传感器网络定位精度,提出一种基于蝙蝠算法(BA)的LSSVR定位方法。考虑到目标定位受环境干扰,采用卡尔曼滤波算法来减小测距误差。仿真实验结果表明,在三维空间中,相较于传统LSSVR算法的无线传感器网络定位,经过BA算法优化后,节点的平均定位误差减小,在考虑高斯噪声的影响下,通过卡尔曼滤波进行距离优化后的定位精度得到明显改善。 展开更多
关键词 最小二乘支持向量回归机 蝙蝠算法 卡尔曼滤波
在线阅读 下载PDF
基于GBO和LSSVR的丝网印刷产品墨量转移预测模型研究 被引量:1
16
作者 王小辉 李圣普 《数字印刷》 CAS 北大核心 2022年第6期79-84,共6页
因丝网印刷产品质量的影响因素众多,且单次实验周期长、实验数据缺乏,本研究以油墨转移率(ITR)为评价指标,以现有数据集作为研究基础,建立了基于凤仙花优化(GBO)算法和最小二乘支持向量回归(LSSVR)的ITR混合预测模型,用GBO算法优化由LS... 因丝网印刷产品质量的影响因素众多,且单次实验周期长、实验数据缺乏,本研究以油墨转移率(ITR)为评价指标,以现有数据集作为研究基础,建立了基于凤仙花优化(GBO)算法和最小二乘支持向量回归(LSSVR)的ITR混合预测模型,用GBO算法优化由LSSVR构建的多元数据非线性预测模型的参数。数据集包含102组实验样本,对提出的混合预测模型进行训练和测试。结果表明,ITR混合预测模型的均方根误差为0.0066,平均绝对百分比误差为1.6502%,确定系数为0.8476,优于其他几种基准模型。该预测模型可以在生产过程中,指导经编运动鞋面丝网印花机参数设置。 展开更多
关键词 凤仙花优化算法 最小二乘支持向量回归 油墨转移率 丝网印刷
在线阅读 下载PDF
拉曼光谱对茶油三元体系掺伪检测研究 被引量:1
17
作者 郭佳 郭郁葱 +1 位作者 姜红 李开开 《食品与发酵工业》 CAS CSCD 北大核心 2024年第22期327-333,共7页
该研究采用拉曼光谱技术对茶油三元体系掺伪进行定量检测研究,通过对比不同预处理方法、建模方法及优化算法的优劣,确定最优的大豆油、玉米油、茶油的多元掺伪检测模型。利用一阶微分、二阶微分、多元散射矫正、标准正态变换等不同预处... 该研究采用拉曼光谱技术对茶油三元体系掺伪进行定量检测研究,通过对比不同预处理方法、建模方法及优化算法的优劣,确定最优的大豆油、玉米油、茶油的多元掺伪检测模型。利用一阶微分、二阶微分、多元散射矫正、标准正态变换等不同预处理方法消除外界因素对光谱的影响,竞争性自适应重加权算法提取特征光谱波段,通过偏最小二乘回归和支持向量机建立茶油掺伪检测模型,分别采用网格搜索法和粒子群算法对支持向量机进行优化。基于标准正态变换预处理后所建立模型效果最佳,大豆油和茶油的最佳预测模型为基于粒子群算法优化的支持向量机,玉米油的最佳预测模型为基于网格搜索法优化的支持向量机,大豆油、玉米油和茶油的预测集决定系数R2和预测均方根误差分别为0.9986、0.9994、0.9999和2.73%、1.62%、0.40%。该研究确定了最优的大豆油、玉米油、茶油的多元掺伪检测模型,针对市场茶油的掺伪检测,基于拉曼光谱分析和优化算法的支持向量机模型为茶油的无损快速定量检测提供了一定的参考和借鉴。 展开更多
关键词 茶油 拉曼光谱 掺伪检测 偏最小二乘回归 粒子群算法优化 支持向量机
在线阅读 下载PDF
基于PLSR和LSSVM模型的土壤水分高光谱反演
18
作者 刘英 范凯旋 +2 位作者 裴为豪 沈文静 葛建华 《矿业安全与环保》 CAS 北大核心 2024年第5期147-153,共7页
为对地下采矿扰动区表层土壤水分进行反演,以大柳塔煤矿52501工作面为例,利用无人机搭载成像光谱仪获取高光谱影像,对获取的光谱数据进行对数、倒数对数、一阶和包络线去除变换,结合地面采集的128个土壤水分数据,基于偏最小二乘回归(PL... 为对地下采矿扰动区表层土壤水分进行反演,以大柳塔煤矿52501工作面为例,利用无人机搭载成像光谱仪获取高光谱影像,对获取的光谱数据进行对数、倒数对数、一阶和包络线去除变换,结合地面采集的128个土壤水分数据,基于偏最小二乘回归(PLSR)和最小二乘支持向量机(LSSVM)构建土壤水分预测模型并验证其预测精度。结果表明,基于一阶变换的PLSR模型和LSSVM模型预测精度相对较好,一阶变换的PLSR模型建模集R^(2)_(c)和预测集R^(2)_(p)分别为0.7021和0.6405,均方根误差RMSE_(c)和RMSE_(p)分别为1.6384%和1.1034%,相对分析误差RPD_(p)为1.7263;一阶变换的LSSVM模型建模集R^(2)_(c)和预测集R^(2)_(p)分别为0.8125和0.5979,均方根误差RMSE_(c)和RMSE_(p)分别为1.2755%和1.3459%,相对分析误差RPD_(P)为1.6323。最终基于PLSR和LSSVM模型完成了土壤水分的制图,实现了土壤水分的空间预测,为该研究区植被引导修复中土壤水分精准提升提供了空间数据支持。 展开更多
关键词 土壤含水量 高光谱 偏最小二乘回归 最小二乘支持向量机 无人机 干旱阈值 引导修复
在线阅读 下载PDF
可见-近红外与中红外光谱预测土壤养分的比较研究
19
作者 李学兰 李德成 +6 位作者 郑光辉 曾荣 蔡凯 高维常 潘文杰 姜超英 曾陨涛 《土壤学报》 CAS CSCD 北大核心 2024年第3期687-698,共12页
对土壤养分的快速和准确测定有助于适时指导施肥。为进一步研究可见-近红外(350~2500 nm)与中红外光谱(4000~650 cm^(–1))对土壤养分的预测能力,以贵州省500个土样为例,对光谱进行Savitzky-Golay(SG)平滑去噪处理,再用标准正态化(SNV)... 对土壤养分的快速和准确测定有助于适时指导施肥。为进一步研究可见-近红外(350~2500 nm)与中红外光谱(4000~650 cm^(–1))对土壤养分的预测能力,以贵州省500个土样为例,对光谱进行Savitzky-Golay(SG)平滑去噪处理,再用标准正态化(SNV)方法进行基线校正,然后分别应用偏最小二乘回归(PLSR)和支持向量机(SVM)两种方法进行建模,探讨了可见-近红外和中红外光谱对土壤全氮(TN)、全磷(TP)、全钾(TK)和碱解氮(AN)、有效磷(AP)、速效钾(AK)共六种土壤养分的预测效果。结果表明:(1)无论基于可见-近红外光谱还是中红外光谱,PLSR模型的预测精度整体均优于SVM模型。(2)中红外光谱对TN、TK和AN的预测精度均显著高于可见-近红外光谱,可见-近红外和中红外光谱均可以可靠地预测TN和TK(性能与四分位间隔距离的比率(RPIQ)大于2.10),中红外光谱可相对较可靠地预测AN(RPIQ=1.87);但两类光谱对TP、AP和AK的预测效果均较差(RPIQ<1.34)。(3)当变量投影重要性得分(VIP)大于1.5时,PLSR模型在中红外光谱区域预测TN和TK的重要波段多于可见-近红外光谱区域,TN的重要波段主要集中于可见-近红外光谱区域的1910和2207 nm附近,中红外光谱区域的1120、1000、960、910、770和668 cm^(–1)附近;TK的重要波段主要集中于可见-近红外光谱区域的540、2176、2225和2268 nm附近,中红外光谱区域的1040、960、910、776、720和668 cm^(–1)附近。因此,中红外光谱技术结合PLSR模型对土壤养分预测效果较好,可快速准确预测土壤TN和TK,可为指导适时施肥提供技术支撑。 展开更多
关键词 可见-近红外光谱 中红外光谱 土壤养分 偏最小二乘回归 支持向量机
在线阅读 下载PDF
基于近红外光谱结合化学计量学的花椒品质快速评价研究
20
作者 张萌萌 杨孝红 +3 位作者 李海洋 高欢晴 李瑶 郭伦锋 《中国调味品》 CAS 北大核心 2024年第10期147-152,185,共7页
应用近红外光谱技术结合化学计量学建立花椒代表性成分的定量分析模型。采用紫外可见分光光度法测定不同批次花椒总酰胺和总黄酮含量,并测定挥发油含量。采集50批次花椒样品的近红外光谱,应用Kennard-Stone算法划分样本集。进一步采用... 应用近红外光谱技术结合化学计量学建立花椒代表性成分的定量分析模型。采用紫外可见分光光度法测定不同批次花椒总酰胺和总黄酮含量,并测定挥发油含量。采集50批次花椒样品的近红外光谱,应用Kennard-Stone算法划分样本集。进一步采用偏最小二乘回归(partial least squares regression,PLSR)和支持向量机(support vector machine,SVM)建立3个指标的含量预测模型,并比较各模型的性能。不同批次花椒样品总酰胺、总黄酮和挥发油含量分别为10.40%~29.09%、10.33%~24.73%、2.72%~8.04%。近红外光谱分别经MSC、SG平滑、SG平滑+MSC预处理后,应用SVM构建的花椒总酰胺、总黄酮和挥发油定量模型准确度较PLSR高,校正集决定系数(R_(C)^(2))分别为0.818,0.655,0.927,预则集决定系数(R_(P)^(2))分别为0.898,0.856,0.916。文章所建立的近红外光谱结合PLSR和SVM定量测定模型可以实现花椒类调味品的品质快速评价。 展开更多
关键词 花椒 近红外光谱 偏最小二乘回归 支持向量机 挥发油
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部