期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
代价敏感的半监督Laplacian支持向量机 被引量:14
1
作者 万建武 杨明 陈银娟 《电子学报》 EI CAS CSCD 北大核心 2012年第7期1410-1415,共6页
代价敏感学习是机器学习领域的一个研究热点.在实际应用中,数据集往往是不平衡的,存在着大量的无标签样本,只有少量的有标签样本,并且存在噪声.虽然针对该情况的代价敏感学习方法的研究已取得了一定的进展,但还需要进一步的深入研究.为... 代价敏感学习是机器学习领域的一个研究热点.在实际应用中,数据集往往是不平衡的,存在着大量的无标签样本,只有少量的有标签样本,并且存在噪声.虽然针对该情况的代价敏感学习方法的研究已取得了一定的进展,但还需要进一步的深入研究.为此,本文提出了一种基于代价敏感的半监督Laplacian支持向量机.该模型在采用无标签扩展策略的基础上,将考虑了数据不平衡的错分代价融入到Laplacian支持向量机的经验损失和Laplacian正则化项中.考虑到噪声样本对决策平面的影响,本文定义了一种样本依赖的代价,对噪声样本赋予较低的权重.在7个UCI数据集和8个NASA软件数据集上的实验结果表明了本文算法的有效性. 展开更多
关键词 代价敏感学习 半监督学习 laplacian支持向量机
在线阅读 下载PDF
Laplacian双联最小二乘支持向量机用于早期故障诊断 被引量:6
2
作者 李锋 汤宝平 郭胤 《振动与冲击》 EI CSCD 北大核心 2017年第16期85-92,共8页
提出基于Laplacian双联最小二乘支持向量机(Laplacian Twin Least Squares Support Vector Machine,LapTLSSVM)半监督模式识别的新型早期故障诊断方法。用时、频域特征集广泛收集旋转机械不同早期故障的特征信息,再用提升半监督局部Fis... 提出基于Laplacian双联最小二乘支持向量机(Laplacian Twin Least Squares Support Vector Machine,LapTLSSVM)半监督模式识别的新型早期故障诊断方法。用时、频域特征集广泛收集旋转机械不同早期故障的特征信息,再用提升半监督局部Fisher判别分析(Enhanced Semi-Supervised Local Fisher Discriminant Analysis,ESSLFDA)将高维时、频域特征集约简为具有更好类区分度的低维特征向量,并输入到Lap-TLSSVM中进行早期故障诊断。Lap-TLSSVM引入了包含大量无标签数据信息的流形规则实现半监督学习;其目标函数只含等式约束条件,且用共轭梯度法求解目标函数的线性方程组以加速训练过程。所提出的方法在训练样本非常稀少的情况下具有较高的诊断精度和计算效率。深沟球轴承早期故障诊断实验验证了该方法的有效性。 展开更多
关键词 旋转机械 流形学习 laplacian双联最小二乘支持向量机 半监督学习 故障诊断
在线阅读 下载PDF
新的基于Laplacian的特征选择方法 被引量:7
3
作者 钱晓亮 左开中 接标 《计算机工程与应用》 CSCD 北大核心 2016年第15期79-82,100,共5页
在各种特征选择方法中,Lasso的方法取得了广泛的研究和应用。然而,利用Lasso进行特征选择的一个主要缺点是只考虑了样本和类标签之间的相关性,却忽略了样本自身的内在关联信息,而这些信息有助于诱导出更具有判别力的特征。为了解决这个... 在各种特征选择方法中,Lasso的方法取得了广泛的研究和应用。然而,利用Lasso进行特征选择的一个主要缺点是只考虑了样本和类标签之间的相关性,却忽略了样本自身的内在关联信息,而这些信息有助于诱导出更具有判别力的特征。为了解决这个问题,提出了一种新的基于Laplacian的特征选择方法,称之为Lap-Lasso。提出的Lap-Lasso方法首先包含一个稀疏正则化项,用于保证只有少数量特征能被选择。另外,引入了一个新的基于Laplacian的正则化项,用于保留同类样本之间的几何分布信息,从而帮助诱导出更具判别力的特征。在UCI数据集的实验结果验证了Lap-Lasso方法的有效性。 展开更多
关键词 特征选择 laplacian 正则化项 Lasso 支持向量机 降维
在线阅读 下载PDF
局部几何保持的Laplacian代价敏感支持向量机 被引量:1
4
作者 周国华 宋洁 殷新春 《中文信息学报》 CSCD 北大核心 2018年第10期59-68,共10页
不平衡数据广泛存在于现实生活中,代价敏感学习能有效解决这一问题。然而,当数据的标记信息有限或不足时,代价敏感学习分类器的分类精度大大下降,分类性能得不到保证。针对这一情况,该文提出了一种局部几何保持的Laplacian代价敏感支持... 不平衡数据广泛存在于现实生活中,代价敏感学习能有效解决这一问题。然而,当数据的标记信息有限或不足时,代价敏感学习分类器的分类精度大大下降,分类性能得不到保证。针对这一情况,该文提出了一种局部几何保持的Laplacian代价敏感支持向量机(LPCS-LapSVM),该模型基于半监督学习框架,将代价敏感学习和类内局部保持散度的思想引入其中,从考虑内在可分辨信息和样本的局部几何分布两方面来提高代价敏感支持向量机在标记信息有限的场景中的分类性能。UCI数据集上的实验结果表明了该算法的有效性。 展开更多
关键词 代价敏感学习 半监督学习 laplacian支持向量机 局部几何保持
在线阅读 下载PDF
基于支持向量机的Laplacian网格曲面孔洞修补算法 被引量:2
5
作者 许斌 李忠科 宋大虎 《计算机工程与设计》 CSCD 北大核心 2014年第1期237-242,共6页
针对三角网格曲面上的孔洞修复问题,提出了一种空间修补算法。在提取孔洞边界特征后进行边界预处理,建立孔洞边界特征平面,并将孔洞边界向该平面投影;通过二维三角化在特征平面上对孔洞多边形进行修补;以孔洞边界周围的网格顶点坐标及其... 针对三角网格曲面上的孔洞修复问题,提出了一种空间修补算法。在提取孔洞边界特征后进行边界预处理,建立孔洞边界特征平面,并将孔洞边界向该平面投影;通过二维三角化在特征平面上对孔洞多边形进行修补;以孔洞边界周围的网格顶点坐标及其Laplacian坐标作为训练样本,通过最小二乘支持向量机推断出填充顶点的Laplacian坐标;以推断得到的填充顶点Laplacian坐标为基础建立线性方程组,求解得到填充顶点坐标,以实现孔洞的准确修补。实例验证说明该算法可以很好的恢复缺失部分曲面的几何特征。 展开更多
关键词 三角网格模型 孔洞修补 laplacian坐标 最小二乘支持向量机 三角剖分
在线阅读 下载PDF
基于LBP的拉普拉斯特征映射人脸识别 被引量:6
6
作者 应自炉 蔡淋波 刘召义 《信号处理》 CSCD 北大核心 2010年第8期1230-1233,共4页
局部二元模式算子法计算简单且易于实现,能有效地提取人脸局部结构的纹理特征。拉普拉斯特征映射算法是一种经典的非线性降维法,其优化过程无局部最小问题。鉴于以上优点,提出了一种基于局部二元模式的拉普拉斯特征映射人脸识别方法。... 局部二元模式算子法计算简单且易于实现,能有效地提取人脸局部结构的纹理特征。拉普拉斯特征映射算法是一种经典的非线性降维法,其优化过程无局部最小问题。鉴于以上优点,提出了一种基于局部二元模式的拉普拉斯特征映射人脸识别方法。该算法首先采用均匀模式的LBP算子提取人脸特征,再用LE算法进行非线性降维,最后用SVM进行分类识别。分别选取了ORL人脸库中每人前3,5,7,9幅样本作为训练集进行了实验,并与其他算法进行了比较分析,证明了该算法的有效性。 展开更多
关键词 人脸识别 局部二元模式 拉普拉斯特征映射 支持向量机
在线阅读 下载PDF
航空发动机转静径向碰摩位置智能识别技术研究 被引量:3
7
作者 刘丽娟 陈果 +2 位作者 李成刚 冯国全 王德友 《振动与冲击》 EI CSCD 北大核心 2013年第3期141-145,共5页
获取航空发动机转静碰摩位置对于诊断发动机碰摩故障和改进设计具有重要意义,基于航空发动机转子实验器的机匣振动加速度信号,研究基于拉普拉斯特征映射(Laplacian Eigenmaps,LE)结合球结构支持向量机的径向碰摩位置智能识别方法。采用... 获取航空发动机转静碰摩位置对于诊断发动机碰摩故障和改进设计具有重要意义,基于航空发动机转子实验器的机匣振动加速度信号,研究基于拉普拉斯特征映射(Laplacian Eigenmaps,LE)结合球结构支持向量机的径向碰摩位置智能识别方法。采用拉普拉斯特征映射算法提取碰摩样本的特征信息,用网格搜索法优化拉普拉斯特征映射算法的相关参数;将特征样本输入到球结构支持向量机分类器,识别不同位置的碰摩样本;利用实测的碰摩数据对该方法进行验证,并与主成分分析法(PCA)所得特征样本分类结果进行比较,结果表明,该方法具有实用性和有效性。 展开更多
关键词 航空发动机 转静碰摩 拉普拉斯特征映射 球结构支持向量机 网格搜索法
在线阅读 下载PDF
基于工况识别的注塑过程产品质量预测方法 被引量:10
8
作者 赵斐 陆宁云 杨毅 《化工学报》 EI CAS CSCD 北大核心 2013年第7期2526-2534,共9页
针对多工况注塑过程的在线质量预测问题,考虑了过程数据高维、耦合、非线性等特点,采用拉普拉斯特征映射(LE)方法实现过程数据的非线性降维;在低维特征空间中采用Mean Shift聚类算法完成样本的工况聚类,以便注塑过程的工况分析和知识挖... 针对多工况注塑过程的在线质量预测问题,考虑了过程数据高维、耦合、非线性等特点,采用拉普拉斯特征映射(LE)方法实现过程数据的非线性降维;在低维特征空间中采用Mean Shift聚类算法完成样本的工况聚类,以便注塑过程的工况分析和知识挖掘;同时运用Mean Shift原理,提出一种新样本的在线工况识别方法;最后应用基于混合粒子群(PSO)参数寻优的偏最小二乘支持向量机(PLS-LSSVM)方法,建立了多工况注塑过程的产品质量软测量模型。实验结果表明,相较于PLS-LSSVM方法,本文方法的预测精度和泛化性能均有明显提高,可为实际注塑企业提供一种效果良好的多工况产品质量在线预测方法。 展开更多
关键词 注塑过程 产品质量预测 拉普拉斯特征映射 MeanShift聚类 偏最小二乘支持向量机
在线阅读 下载PDF
基于LSVM分类鉴定器的脱机签名鉴定研究 被引量:2
9
作者 朱浩悦 耿国华 +1 位作者 周明全 李佳 《计算机应用与软件》 CSCD 2009年第7期219-221,共3页
针对脱机中文签名鉴定,主要对脱机签名鉴定的特征抽取和比较决策做进一步的研究。在特征提取与选择上,在参考国内外一些成熟方法的基础上做相应的改进和尝试,使用静态形状特征和伪动态特征相结合的方法,提出一种新的高灰度稳定区特征,... 针对脱机中文签名鉴定,主要对脱机签名鉴定的特征抽取和比较决策做进一步的研究。在特征提取与选择上,在参考国内外一些成熟方法的基础上做相应的改进和尝试,使用静态形状特征和伪动态特征相结合的方法,提出一种新的高灰度稳定区特征,在特征选择上采用一种把概率距离法中的Bhattacharyya距离和特征本身综合起来考虑的方法;在比较决策上,采用比标准SVM算法速度更快,更易于实现的LSVM算法作为分类鉴定的方法,取得了较好的效果。 展开更多
关键词 脱机中文签名鉴定 生物测定 特征提取 拉普拉斯算子 LSVM
在线阅读 下载PDF
基于HRCMFDE、LS、BA-SVM的行星齿轮箱故障诊断 被引量:4
10
作者 庄敏 李革 +1 位作者 范智军 孔德成 《机电工程》 CAS 北大核心 2022年第11期1535-1543,共9页
针对行星齿轮箱的特征提取以及故障识别问题,提出了一种基于混合精细复合多尺度波动散布熵(HRCMFDE)特征提取、拉普拉斯分数(LS)特征降维优化和蝙蝠算法优化支持向量机(BA-SVM)故障识别的行星齿轮箱故障诊断方法。首先,提出了一种新的... 针对行星齿轮箱的特征提取以及故障识别问题,提出了一种基于混合精细复合多尺度波动散布熵(HRCMFDE)特征提取、拉普拉斯分数(LS)特征降维优化和蝙蝠算法优化支持向量机(BA-SVM)故障识别的行星齿轮箱故障诊断方法。首先,提出了一种新的时间序列复杂度测量方法—HRCMFDE(其由5种不同粗粒化方式的RCMFDE组成,具备更全面和可靠的特征提取性能),用于从振动信号中挖掘出反映行星齿轮箱状态的故障信息,构成初始的混合故障特征;然后,考虑到由HRCMFDE组成的故障特征具有较高的维数和冗余,利用LS对初始特征进行了优化,生成了低维的敏感特征;最后,利用基于蝙蝠算法优化的支持向量机,对行星齿轮系不同故障特征向量进行了训练和分类,利用真实故障数据集对基于HRCMFDE、LS、BA-SVM的方法进行了验证。研究结果表明:利用行星齿轮箱数据集对该方案进行的有效性实验,能够准确地识别出齿轮箱的不同故障,其单次分类的准确率达到了98.13%,多次分类的平均准确率也优于对比方法;该结果验证了基于混合精细复合多尺度波动散布熵特征提取的有效性,采用该方法能够对行星齿轮箱的故障进行诊断。 展开更多
关键词 特征提取 特征降维优化 故障分类识别 混合精细复合多尺度波动散布熵 拉普拉斯分数 蝙蝠算法优化支持向量机
在线阅读 下载PDF
基于拉普拉斯支持向量机的刀具工况监测方法
11
作者 张宇 刘丽冰 +1 位作者 李鸣 盖丽雅 《制造技术与机床》 北大核心 2018年第7期80-84,共5页
针对目前刀具工况监测方法中,有标签刀具工况样本获取成本高,同时大量无标签刀具工况样本被无价值地丢弃的问题,提出了一种基于拉普拉斯支持向量机(Laplacian Support Vector Machine,Lap SVM)的刀具工况在线监测方法。以插铣刀具工况... 针对目前刀具工况监测方法中,有标签刀具工况样本获取成本高,同时大量无标签刀具工况样本被无价值地丢弃的问题,提出了一种基于拉普拉斯支持向量机(Laplacian Support Vector Machine,Lap SVM)的刀具工况在线监测方法。以插铣刀具工况监测为例设计了切削实验,Lap SVM利用少量有标签样本的分类约束和大量的无标签样本的流形约束实现刀具工况在线监测。实验结果表明该方法在有标签样本量较少情况下的分类正确率较传统支持向量机有显著提高,具有较好工程应用价值。 展开更多
关键词 拉普拉斯支持向量机 刀具工况 监测
在线阅读 下载PDF
智能拉普拉斯分类器
12
作者 戴宏亮 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期14-19,共6页
针对拉普拉斯分类器的核参数选择问题,通过首先假设窗的三个估计中核参数取不同的值,然后运用智能遗传算法对核参数进行优选,得到一种新的分类器——智能拉普拉斯分类器。多个基准数据集上的实验结果证明,智能拉普拉斯分类器相对普通拉... 针对拉普拉斯分类器的核参数选择问题,通过首先假设窗的三个估计中核参数取不同的值,然后运用智能遗传算法对核参数进行优选,得到一种新的分类器——智能拉普拉斯分类器。多个基准数据集上的实验结果证明,智能拉普拉斯分类器相对普通拉普拉斯分类器和支持向量机而言,具有较高的分类精度和稳定性,是一种有效的分类方法。 展开更多
关键词 核方法 拉普拉斯分类器 支持向量机 智能遗传算法
在线阅读 下载PDF
基于复合多尺度熵与拉普拉斯支持向量机的滚动轴承故障诊断方法 被引量:11
13
作者 代俊习 郑近德 +1 位作者 潘海洋 潘紫微 《中国机械工程》 EI CAS CSCD 北大核心 2017年第11期1339-1346,共8页
针对早期滚动故障特征不明显和特征提取难等问题,将一种新的衡量时间序列复杂性的方法——复合多尺度熵(CMSE)应用于滚动轴承故障振动信号的特征提取。CMSE克服了多尺度熵中粗粒化方式的不足,得到的熵值一致性和稳定性好。同时,针对机... 针对早期滚动故障特征不明显和特征提取难等问题,将一种新的衡量时间序列复杂性的方法——复合多尺度熵(CMSE)应用于滚动轴承故障振动信号的特征提取。CMSE克服了多尺度熵中粗粒化方式的不足,得到的熵值一致性和稳定性好。同时,针对机械故障智能诊断中收集大量的样本比较容易而要对所有的样本进行类别标记却较为困难这一问题,将拉普拉斯支持向量机(LapSVM)应用于滚动轴承故障的智能诊断中。在此基础上,提出了一种基于CMSE,序列前向选择(SFS)特征选择和LapSVM的滚动轴承故障诊断方法。最后,将提出的方法应用于试验数据分析,结果表明:CMSE能够有效地提取滚动轴承的故障特征;当有标记样本的数量较少时,与仅使用有标记样本进行学习的支持向量机相比,结合SFS特征选择的LapSVM方法利用大量的无标记样本进行辅助学习,可以显著提高故障诊断的正确率。 展开更多
关键词 多尺度熵 复合多尺度熵 支持向量机 拉普拉斯支持向量机 故障诊断
在线阅读 下载PDF
基于VMD和拉普拉斯分值的柴油机故障诊断 被引量:3
14
作者 吉哲 傅忠谦 《组合机床与自动化加工技术》 北大核心 2017年第10期129-133,137,共6页
针对柴油机声信号非平稳非线性的特性,提出了一种基于变分模态分解(VMD)和拉普拉斯分值(LS)的柴油机故障诊断方法。首先对柴油机声信号进行变分模态分解,从分解得到的各模态函数中进行统计特征提取,组成初始特征集;然后利用改进的拉普... 针对柴油机声信号非平稳非线性的特性,提出了一种基于变分模态分解(VMD)和拉普拉斯分值(LS)的柴油机故障诊断方法。首先对柴油机声信号进行变分模态分解,从分解得到的各模态函数中进行统计特征提取,组成初始特征集;然后利用改进的拉普拉斯分值算法进行特征排序,以支持向量机(SVM)为故障分类器,实现柴油机的故障诊断;最后通过设计接受者操作特性(ROC)指示器,确定故障诊断的最优维。将该方法应用到6135D型柴油机四种常见故障的诊断中,实验结果表明该方法能有效提取柴油机声信号特征并具有较高的诊断精度。 展开更多
关键词 变分模态分解 拉普拉斯分值 特征提取 支持向量机
在线阅读 下载PDF
基于改进HHT和SVM的滚动轴承故障状态识别 被引量:6
15
作者 王圣杰 殷红 彭珍瑞 《噪声与振动控制》 CSCD 北大核心 2021年第1期89-94,107,共7页
针对滚动轴承故障信号特征难以提取与故障诊断效率较低问题,引入集合经验模态分解(EEMD)对Hilbert-Huang变换(HHT)进行改进,将改进的HHT结合拉普拉斯得分(Laplacian score,LS)进行轴承故障特征提取,并利用遗传算法(GA)优化支持向量机(S... 针对滚动轴承故障信号特征难以提取与故障诊断效率较低问题,引入集合经验模态分解(EEMD)对Hilbert-Huang变换(HHT)进行改进,将改进的HHT结合拉普拉斯得分(Laplacian score,LS)进行轴承故障特征提取,并利用遗传算法(GA)优化支持向量机(SVM)分类参数,将其应用于滚动轴承振动信号故障状态识别中。首先,利用相关系数筛选EEMD分解后的IMF分量,计算IMF分量的Hilbert边际谱能量与Lempel-Ziv复杂度构成轴承高维特征向量;其次,运用LS得分对高维特征向量进行数据降维;最后,用GA-SVM对轴承不同故障状态进行识别。通过轴承不同状态下的试验数据验证本文方法,结果表明所提方法能够有效识别轴承不同故障状态。 展开更多
关键词 故障诊断 集合经验模态分解 HILBERT-HUANG变换 拉普拉斯得分 支持向量机 状态识别
在线阅读 下载PDF
基于拉普拉斯非负稀疏编码的图像分类 被引量:6
16
作者 李钱钱 曹国 《计算机工程》 CAS CSCD 2013年第11期240-244,共5页
针对复杂背景下的图像分类问题,结合非负稀疏编码和局部保持投影算法,提出一种拉普拉斯正则化非负稀疏编码算法。相比于已有的稀疏编码算法,该算法不仅能更好地模拟哺乳动物初级视觉系统主视皮层V1区简单细胞感受野的行为,同时也可使相... 针对复杂背景下的图像分类问题,结合非负稀疏编码和局部保持投影算法,提出一种拉普拉斯正则化非负稀疏编码算法。相比于已有的稀疏编码算法,该算法不仅能更好地模拟哺乳动物初级视觉系统主视皮层V1区简单细胞感受野的行为,同时也可使相似的特征经过编码后仍然相似,从而保证特征度量的一致性。将该算法与空间金字塔匹配模型相结合应用于图像分类,在多个图像数据库上的实验结果表明,该算法具有较高的分类精度。 展开更多
关键词 稀疏编码 非负稀疏编码 拉普拉斯非负稀疏编码 空间金字塔匹配模型 图像分类 支持向量机
在线阅读 下载PDF
基于CMCPSO-SVM的轴承微弱故障诊断方法 被引量:3
17
作者 纪俊卿 孔晓佳 +3 位作者 邹方豪 张静 许同乐 袁伟 《机床与液压》 北大核心 2022年第5期185-190,共6页
针对旋转机械轴承微弱故障振动信号易被强噪声掩盖难以识别的问题,提出一种改进混沌粒子群优化支持向量机的故障诊断方法。将信号通过局部均值分解算法分解处理得到乘积函数(PF)分量,并进行能量归一化处理获得时频域特征集;通过迭代拉... 针对旋转机械轴承微弱故障振动信号易被强噪声掩盖难以识别的问题,提出一种改进混沌粒子群优化支持向量机的故障诊断方法。将信号通过局部均值分解算法分解处理得到乘积函数(PF)分量,并进行能量归一化处理获得时频域特征集;通过迭代拉普拉斯得分降低时频域特征集的空间维度;以PF分量的排列熵作为混沌粒子群的适应度,并加入交叉和变异新策略,建立一种新的交叉变异混沌粒子群优化方法;利用改进的粒子群算法优化支持向量机的核函数和惩罚因子,并将优化后的分类模型应用于轴承故障诊断。结果表明:该故障分类模型的识别准确率高于其他分类模型。 展开更多
关键词 轴承微弱故障 交叉变异混沌粒子群 迭代拉普拉斯分数 支持向量机 故障诊断
在线阅读 下载PDF
基于拉普拉斯分值和鲸鱼寻优SVM的滚动轴承故障诊断 被引量:11
18
作者 白丽丽 韩振南 +1 位作者 任家骏 秦晓峰 《太原理工大学学报》 CAS 北大核心 2019年第6期829-834,共6页
滚动轴承的振动信号所呈现出的非高斯、非线性等特性,使得其故障类型和故障严重程度难以准确识别,故此提出了一种拉普拉斯分值(laplacian score,LS)与基于鲸鱼算法(whale optimization algorithm,WOA)寻优的支持向量机(support vector m... 滚动轴承的振动信号所呈现出的非高斯、非线性等特性,使得其故障类型和故障严重程度难以准确识别,故此提出了一种拉普拉斯分值(laplacian score,LS)与基于鲸鱼算法(whale optimization algorithm,WOA)寻优的支持向量机(support vector machine,SVM)相结合的智能故障诊断方法。首先提取原始振动信号时域、频域、时频域的统计特征,通过利用LS选择较为敏感、更能表征故障状态的特征,形成故障特征向量,然后通过鲸鱼算法来优化SVM的惩罚因子和核参数,构造成分类器模型来进行故障模式识别,判断出滚动轴承的故障类型。通过多种算法对SVM的参数寻优进行对比发现WOA寻优优势明显,同时使用多方面的实验数据验证了该方法在提取滚动轴承故障特征信息方面的有效性,且具有较高的分类识别精度。 展开更多
关键词 拉普拉斯分值(LS) 鲸鱼优化算法(WOA) 支持向量机(SVM) 滚动轴承 故障诊断
在线阅读 下载PDF
基于改进半监督SVR算法的忙时话务量预测
19
作者 兰娇 覃锡忠 +1 位作者 贾振红 陈丽 《计算机工程与应用》 CSCD 2014年第20期211-214,共4页
为了提高运营商节假日忙时话务量的预测精度,通过分析各节假日忙时话务量数据的特点,提出基于改进半监督支持向量机预测算法。该方法采用基于图形拉普拉斯算子的半监督学习算法来变形训练支持向量回归机的核矩阵。针对图形拉普拉斯算子... 为了提高运营商节假日忙时话务量的预测精度,通过分析各节假日忙时话务量数据的特点,提出基于改进半监督支持向量机预测算法。该方法采用基于图形拉普拉斯算子的半监督学习算法来变形训练支持向量回归机的核矩阵。针对图形拉普拉斯算子计算量较大的问题,采用Nystrom算法对其进行优化。仿真结果表明,提出的算法有较好的泛化能力和较高的预测精度。 展开更多
关键词 节假日忙时话务预测 支持向量回归机 半监督学习 图形拉普拉斯算子 Nystrom算法
在线阅读 下载PDF
基于ε-Pinball损失函数的拉普拉斯双支持向量机
20
作者 赵瑞卿 张晓丹 赵伟峰 《济南大学学报(自然科学版)》 CAS 北大核心 2019年第5期417-424,共8页
考虑到拉普拉斯双支持向量机中的平方损失函数对分类超平面两侧的同类样本点给予了相同重视,当出现噪声或离群点时,所得分类超平面可能会出现偏离的现象,为了减小噪声或离群点的影响,提出基于ε-Pinball损失函数的拉普拉斯双支持向量机... 考虑到拉普拉斯双支持向量机中的平方损失函数对分类超平面两侧的同类样本点给予了相同重视,当出现噪声或离群点时,所得分类超平面可能会出现偏离的现象,为了减小噪声或离群点的影响,提出基于ε-Pinball损失函数的拉普拉斯双支持向量机;给出正、负损失的概念,探讨参数τ对分类超平面的影响,分析参数ν的意义,并进行数值实验。结果表明,通过调节参数τ,可增强模型的灵活性,使得模型具有较好的分类能力及抗噪性。 展开更多
关键词 拉普拉斯双支持向量机 平方损失函数 ε-Pinball损失函数 正损失 负损失
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部