期刊文献+
共找到105篇文章
< 1 2 6 >
每页显示 20 50 100
小波包奇异谱熵与LVQ网络齿轮箱轴承退化评估
1
作者 肖乾 汪寒俊 +5 位作者 朱海燕 王文静 朱恩豪 叶小芬 魏昱洲 李林 《振动.测试与诊断》 EI CSCD 北大核心 2024年第6期1181-1189,1249,1250,共11页
为研究齿轮箱轴承性能退化评估,首先,根据高速列车齿轮箱轴承与齿轮的相关数据,对齿轮箱轴承仿真振动信号训练样本进行小波包分解并计算小波包奇异谱熵构成特征向量,输入到学习向量量化(learning vector quantization,简称LVQ)神经网络... 为研究齿轮箱轴承性能退化评估,首先,根据高速列车齿轮箱轴承与齿轮的相关数据,对齿轮箱轴承仿真振动信号训练样本进行小波包分解并计算小波包奇异谱熵构成特征向量,输入到学习向量量化(learning vector quantization,简称LVQ)神经网络聚类模型中,建立性能退化评估模型;其次,将测试样本按同样的方式提取特征向量,输入到建立好的模型中评估轴承性能退化状态;然后,选取轴承全寿命疲劳试验进行分析,并选择特征优选和模糊C均值聚类算法进行对比;最后,根据LVQ神经网络聚类算法确定训练样本中正常状态和失效状态的聚类中心,建立性能退化评估模型。结果表明:将小波包奇异谱熵和LVQ神经网络聚类算法相结合,能较好区分齿轮箱轴承不同的退化状态,准确表现轴承性能退化曲线;通过隶属度函数计算隶属度作为性能退化评价指标,可以对性能退化状态进行定量表征;通过对时域指标和频域指标特征优选进行对比,验证了本研究方法更加有效,对早期退化更敏感,能及时发现早期退化并且能对退化程度进行准确评估。 展开更多
关键词 交通工程 齿轮箱振动加速度 信号仿真 小波包奇异谱熵 学习向量量化神经网络聚类 性能退化评估
在线阅读 下载PDF
结合遗传算法的LVQ神经网络在声学底质分类中的应用 被引量:27
2
作者 唐秋华 刘保华 +2 位作者 陈永奇 周兴华 丁继胜 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2007年第1期313-319,共7页
学习向量量化(Learning Vector Quantization,LVQ)神经网络在声学底质分类中具有广泛应用.常用的LVQ神经网络存在神经元未被充分利用以及算法对初值敏感的问题,影响底质分类精度.本文提出采用遗传算法(Genetic Algorithms,GA)优化神经... 学习向量量化(Learning Vector Quantization,LVQ)神经网络在声学底质分类中具有广泛应用.常用的LVQ神经网络存在神经元未被充分利用以及算法对初值敏感的问题,影响底质分类精度.本文提出采用遗传算法(Genetic Algorithms,GA)优化神经网络的初始值,将GA与LVQ神经网络结合起来,迅速得到最佳的神经网络初始权值向量,实现对海底基岩、砾石、砂、细砂以及泥等底质类型的快速、准确识别.将其应用于青岛胶州湾海区底质分类识别研究中,通过与标准的LVQ神经网络的分类结果进行比较表明,该方法在分类速度以及精度上都有了较大提高. 展开更多
关键词 学习向量量化 遗传算法 多波束测深系统 底质分类
在线阅读 下载PDF
GA优化LVQ网络的配电网接地故障选线方法 被引量:11
3
作者 彭湃 周羽生 +3 位作者 高云龙 刘让姣 安正洲 熊杰 《电力系统及其自动化学报》 CSCD 北大核心 2015年第12期64-69,共6页
针对配电网故障相电压过零点且高阻接地故障选线困难的问题,文中提出了应用遗传算法优化学习量量化神经网络的配电网单相接地故障选线方法。首先利用小波分析方法提取线路零序电流信号的模极大值,以此作为学习量量化神经网络的输入向量... 针对配电网故障相电压过零点且高阻接地故障选线困难的问题,文中提出了应用遗传算法优化学习量量化神经网络的配电网单相接地故障选线方法。首先利用小波分析方法提取线路零序电流信号的模极大值,以此作为学习量量化神经网络的输入向量,采用局部搜索算子改进的遗传算法去优化神经网络的初始权值向量,解决了网络对初始权值的敏感性问题。加速网络的收敛过程,提高网络的聚类精度,实现对不同故障类型进行故障线路的快速、准确识别。仿真结果表明,该方法有效地减少了传统学习量量化神经网络选线的误判几率,提高了选线速度和精确度。 展开更多
关键词 配电网 遗传算法 学习量量化 小波分析 故障选线
在线阅读 下载PDF
基于EMD和LVQ的信号特征提取及分类方法 被引量:8
4
作者 余炜 周娅 +3 位作者 马晶晶 万代立 刘伦 张灿斌 《数据采集与处理》 CSCD 北大核心 2014年第5期683-687,共5页
针对非平稳、非线性、微弱信号难以分析和处理的特点,本文提出了一种基于经验模式分解和学习向量量化神经网络的信号处理和分类方法,并在生物信号处理领域(左、右手运动想象的脑电信号)进行了研究和应用。首先通过经验模式分解算法对脑... 针对非平稳、非线性、微弱信号难以分析和处理的特点,本文提出了一种基于经验模式分解和学习向量量化神经网络的信号处理和分类方法,并在生物信号处理领域(左、右手运动想象的脑电信号)进行了研究和应用。首先通过经验模式分解算法对脑电信号分解,然后选取主要固有模态函数分量并计算其绝对均值作为特征值,最后使用学习向量量化网络进行分类,并分别与支持向量机和误差反向传播神经网络分类算法进行了对比研究。实验结果表明,所提出的算法分类正确率达到了87%,相比于其余两种对比算法在特定的信号处理领域优越,具有一定的参考和研究价值。 展开更多
关键词 经验模式分解 学习向量量化神经网络 脑-机接口 脑电信号
在线阅读 下载PDF
一种基于LVQ神经网络与图像处理的火焰识别算法 被引量:14
5
作者 包晗 康泉胜 周明 《中国安全科学学报》 CAS CSCD 北大核心 2011年第6期60-64,共5页
针对传统火灾探测技术存在的不稳定、误判率高等缺点,通过分析室内火灾图像与常见干扰光源图像的特点,提出一种基于人工神经网络的火焰图像检测技术。对火焰图像的基本特性进行分析,利用火焰图像序列的面积重叠率和中心相对移动率以及... 针对传统火灾探测技术存在的不稳定、误判率高等缺点,通过分析室内火灾图像与常见干扰光源图像的特点,提出一种基于人工神经网络的火焰图像检测技术。对火焰图像的基本特性进行分析,利用火焰图像序列的面积重叠率和中心相对移动率以及颜色等信息,结合实现学习向量量化(LVQ)神经网络融合技术,对视频序列图像中火焰的自动检测。仿真试验结果表明,基于LVQ神经网络的信息融合算法的网络收敛速度较快,有较高的火灾火焰识别准确率。 展开更多
关键词 学习向量量化(lvq)神经网络 图像处理 火焰识别 目标检测 火灾火焰
在线阅读 下载PDF
基于LVQ工况识别的混合动力汽车自适应能量管理控制策略 被引量:18
6
作者 邓涛 卢任之 +1 位作者 李亚南 林椿松 《中国机械工程》 EI CAS CSCD 北大核心 2016年第3期420-425,共6页
为提高混合动力汽车的燃油经济性,选取6种典型行驶工况代表"市区"、"郊区"和"高速公路"3类主要工况,采用基于规则的模糊能量管理控制策略,以整车燃油经济性为目标,在3类主要工况下用改进型粒子群优化算... 为提高混合动力汽车的燃油经济性,选取6种典型行驶工况代表"市区"、"郊区"和"高速公路"3类主要工况,采用基于规则的模糊能量管理控制策略,以整车燃油经济性为目标,在3类主要工况下用改进型粒子群优化算法优化发动机联合工作曲线与发动机关闭曲线系数,得到相应的优化后的隶属度函数的参数;运用学习向量量化(LVQ)算法识别车辆运行工况,动态选择相应的模糊控制策略,使混合动力汽车控制策略对选定的几种代表性工况具有自适应性,从而提高整车的燃油经济性。仿真对比结果表明,相比于传统混合动力汽车,燃油经济性提高了3.4%。 展开更多
关键词 混合动力汽车 工况识别 燃油经济性 粒子群优化算法 学习向量量化(lvq)算法
在线阅读 下载PDF
ELVQ算法实现宽参数偏移的多故障电路诊断 被引量:3
7
作者 徐崇斌 赵志文 郑慧芳 《电子与信息学报》 EI CSCD 北大核心 2011年第6期1520-1524,共5页
该文提出了一种强化自适应策略的学习矢量量化(Enhanced Learning Vector Quantization,ELVQ)算法,并设计了基于SOM(Self-Organizing Map)-LVQ模型的故障分类方法,用于实现宽参数偏移的模拟电路多故障诊断。该文算法具有两方面的优势:... 该文提出了一种强化自适应策略的学习矢量量化(Enhanced Learning Vector Quantization,ELVQ)算法,并设计了基于SOM(Self-Organizing Map)-LVQ模型的故障分类方法,用于实现宽参数偏移的模拟电路多故障诊断。该文算法具有两方面的优势:一方面利用获胜神经元数目的自适应,均衡了神经元的获胜概率;另一方面根据样本分类结果计算作用因子修正神经元的权值,增强了类别边界决策性能。仿真结果表明,所提出的算法具有收敛速度快,分类误差小等特点。 展开更多
关键词 模拟电路 多故障诊断 学习矢量量化 宽参数偏移 Elvq算法
在线阅读 下载PDF
基于局部化原理和概率模型的LVQ改进算法 被引量:6
8
作者 叶少珍 吴鸣锐 +2 位作者 张钹 郑文波 马少平 《计算机学报》 EI CSCD 北大核心 2003年第5期626-629,共4页
利用局部化原理和概率模型的优化方法 ,提出一种LVQ改进算法———基于局部化原理和概率模型的LVQ算法 (LocalizationprincipleandProbabilitybasedLVQ ,LoPLVQ) .与传统LVQ算法相比 ,不仅缩短训练时间 ,而且具有较高的识别率 .实验结... 利用局部化原理和概率模型的优化方法 ,提出一种LVQ改进算法———基于局部化原理和概率模型的LVQ算法 (LocalizationprincipleandProbabilitybasedLVQ ,LoPLVQ) .与传统LVQ算法相比 ,不仅缩短训练时间 ,而且具有较高的识别率 .实验结果表明改进算法可用来解决大规模的模式识别问题 . 展开更多
关键词 模式识别 局部化原理 概率模型 lvq改进算法 学习矢量量化算法 计算机
在线阅读 下载PDF
基于LVQ的软件项目风险评估模型的研究 被引量:7
9
作者 潘梅森 颜君颜 《计算机工程与应用》 CSCD 北大核心 2006年第12期126-130,共5页
以16种风险为基础,建立了一个新的软件项目风险评估模型,把以往每个软件项目的16种风险看做一个16×1维列矢量,并做为LVQ神经网络的训练矢量,对其进行聚类分析,最终把项目风险水平分为:风险水平很低、风险水平中等、风险水平很高等... 以16种风险为基础,建立了一个新的软件项目风险评估模型,把以往每个软件项目的16种风险看做一个16×1维列矢量,并做为LVQ神经网络的训练矢量,对其进行聚类分析,最终把项目风险水平分为:风险水平很低、风险水平中等、风险水平很高等三个类别,并对项目风险水平做出预测。 展开更多
关键词 软件项目 风险评估模型 学习矢量量化 lvq
在线阅读 下载PDF
基于MA及LVQ神经网络的智能NIPS模型与实现 被引量:3
10
作者 贾铁军 刘泓漫 《小型微型计算机系统》 CSCD 北大核心 2012年第8期1836-1840,共5页
为了提高入侵防御系统的智能性和准确率,在讨论入侵防御技术特性和关键技术的基础上,分析了利用MA(MobileAgent)及LVQ(Learning Vector Quantization)神经网络构建入侵防御系统的优势,以及LVQ神经网络的结构特性和学习算法,提出基于MA及... 为了提高入侵防御系统的智能性和准确率,在讨论入侵防御技术特性和关键技术的基础上,分析了利用MA(MobileAgent)及LVQ(Learning Vector Quantization)神经网络构建入侵防御系统的优势,以及LVQ神经网络的结构特性和学习算法,提出基于MA及LVQ神经网络的新智能入侵防御系统模型结构,概述了新模型的实现方法,并用Matlab算法进行了仿真实验.结果表明,基于MA及LVQ神经网络的新智能入侵防御系统模型整体防御准确率与检测辨识性能都有较大提高. 展开更多
关键词 移动代理MA 学习向量量化lvq lvq神经网络 基于网络的入侵防御系统NIPS 模型构建与实现
在线阅读 下载PDF
基于DTW和LVQ网络混合模型的语音识别方法 被引量:4
11
作者 林遂芳 张海英 潘永湘 《系统仿真学报》 CAS CSCD 北大核心 2005年第8期1959-1961,1965,共4页
提出一种基于动态时间规整(DTW)和学习矢量量化(LVQ)神经网络的语音识别方法。该方法用动态时间规整算法先对语音信号进行时间规整,然后通过学习矢量量化神经网络进行语音的分类识别。首先介绍利用动态时间规整和学习矢量量化进行语音... 提出一种基于动态时间规整(DTW)和学习矢量量化(LVQ)神经网络的语音识别方法。该方法用动态时间规整算法先对语音信号进行时间规整,然后通过学习矢量量化神经网络进行语音的分类识别。首先介绍利用动态时间规整和学习矢量量化进行语音识别的基本方法,然后给出DTW/LVQ混合模型的系统结构和学习算法,最后给出三种语音识别算法的实验结果。大量实验表明,混合模型的识别率,皆明显高于单一的动态时间规整和学习矢量量化的识别率。 展开更多
关键词 语音识别 动态时间规整 学习矢量量化 混合模型
在线阅读 下载PDF
遗传算法的LVQ神经网络在遥感图像分类中的应用 被引量:5
12
作者 姚谦 郭子祺 +1 位作者 袁泉 柳彩霞 《遥感信息》 CSCD 2008年第5期21-24,共4页
学习矢量量化(LVQ2)神经网络算法对初值非常敏感,影响遥感图像分类的精度。遗传算法具有很强的全局搜索能力和鲁棒性,能够优化LVQ2神经网络的初始权值向量,在一定程度上降低算法对初值的敏感性。本文采用遗传算法选取LVQ2神经网络的初... 学习矢量量化(LVQ2)神经网络算法对初值非常敏感,影响遥感图像分类的精度。遗传算法具有很强的全局搜索能力和鲁棒性,能够优化LVQ2神经网络的初始权值向量,在一定程度上降低算法对初值的敏感性。本文采用遗传算法选取LVQ2神经网络的初始权值,并以江苏省扬州地区遥感图像分类为例,通过与标准LVQ神经网络、最大似然法进行比较,结果证明,利用遗传算法的LVQ2神经网络在分类精度上有了一定的提高。 展开更多
关键词 学习矢量量化 神经网络 遗传算法 遥感图像分类
在线阅读 下载PDF
基于WT和LVQ网络的多姿态人脸识别 被引量:1
13
作者 陈蕾 黄贤武 孙兵 《计算机工程》 EI CAS CSCD 北大核心 2006年第21期47-49,共3页
提出了基于小波变换和学习矢量量化网络相结合的新方法进行人脸识别。小波变换具有良好的多尺度特征表达能力,能将图像的大部分能量集中到最低分辨率子图像,可以很好地对图像降维和表征人脸图像的特征。LVQ算法是在有教师状态下对竞争... 提出了基于小波变换和学习矢量量化网络相结合的新方法进行人脸识别。小波变换具有良好的多尺度特征表达能力,能将图像的大部分能量集中到最低分辨率子图像,可以很好地对图像降维和表征人脸图像的特征。LVQ算法是在有教师状态下对竞争层进行训练的一种学习算法。LVQ网络结构简单,但却表现出比BP网络更强的有效性和鲁棒性。实验表明该方法对表情和姿态变化的人脸具有良好的分类性能和识别效率。 展开更多
关键词 小波变换 学习矢量量化 神经网络 分类 多姿态人脸识别
在线阅读 下载PDF
基于生成模型的三维波束形成图像压缩方法
14
作者 赵昀杰 贺岩松 +1 位作者 张志飞 徐中明 《中国机械工程》 北大核心 2025年第7期1520-1529,共10页
针对通道压缩方法在高压缩率下导致DenseNet模型定位性能显著降低的问题,提出一种基于改进向量量化变分自编码器(VQ-VAE-2)模型的三维波束形成图像压缩(3D-BFMC)方法。先利用VQ-VAE-2模型的层级编码器将三维波束形成图压缩为向量化局部... 针对通道压缩方法在高压缩率下导致DenseNet模型定位性能显著降低的问题,提出一种基于改进向量量化变分自编码器(VQ-VAE-2)模型的三维波束形成图像压缩(3D-BFMC)方法。先利用VQ-VAE-2模型的层级编码器将三维波束形成图压缩为向量化局部特征矩阵,再将该矩阵输入DenseNet模型实现三维定位。仿真结果表明,使用3D-BFMC方法压缩数据训练的DenseNet模型在定位精度、频率泛化性能、噪声鲁棒性上均优于通道压缩方法。单声源试验验证了3D-BFMC方法在真实环境中的有效性和可行性。 展开更多
关键词 波束形成 数据压缩 深度学习 改进向量量化变分自编码器 三维空间
在线阅读 下载PDF
MLVQ网络聚类算法 被引量:2
15
作者 闫德勤 迟忠先 王军 《自动化学报》 EI CSCD 北大核心 2004年第4期608-612,共5页
讨论了关于改进LVQ聚类网络的理论与算法.为克服LVQ网络聚类算法对初值敏感的问题广义学习矢量量化(GLVQ)网络算法对LVQ算法进行了改进,但GLVQ算法性能不稳定.GLVQ-F是对GLVQ网络算法的修改,但GLVQ-F算法仍存在对初值的敏感问题.分析了G... 讨论了关于改进LVQ聚类网络的理论与算法.为克服LVQ网络聚类算法对初值敏感的问题广义学习矢量量化(GLVQ)网络算法对LVQ算法进行了改进,但GLVQ算法性能不稳定.GLVQ-F是对GLVQ网络算法的修改,但GLVQ-F算法仍存在对初值的敏感问题.分析了GLVQ-F网络算法对初值敏感的原因以及算法不稳定的理论缺陷,改进了算法理论并给出了一种新的改进的网络算法(MLVQ).实验结果表明新的算法解决了原有算法所存在的问题,而且性能稳定. 展开更多
关键词 聚类分析 Glvq—F算法 Mlvq算法
在线阅读 下载PDF
基于相空间重构与GSA-LVQ的有载调压变压器分接开关机械故障诊断 被引量:9
16
作者 赵书涛 李小双 +3 位作者 李大双 徐晓会 李云鹏 李波 《电测与仪表》 北大核心 2023年第10期136-141,共6页
针对有载调压变压器分接开关机械故障诊断准确率不高以及潜在机械故障不能及时被发现的问题,提出了一种基于互补集合经验模态分解(CEEMD)、相空间重构结合万有引力搜索法(GSA)改进学习矢量量化神经网络(LVQ)的有载分接开关机械故障诊断... 针对有载调压变压器分接开关机械故障诊断准确率不高以及潜在机械故障不能及时被发现的问题,提出了一种基于互补集合经验模态分解(CEEMD)、相空间重构结合万有引力搜索法(GSA)改进学习矢量量化神经网络(LVQ)的有载分接开关机械故障诊断新方法。采用CEEMD对振动信号进行时频域分解,然后通过C-C算法确定延迟时间和嵌入维数,对反映不同频率特征的固有模态函数(IMF)进行相空间重构,并提取反映混沌特征的两个特征量李雅普诺夫指数和关联维数构成特征向量。利用GSA优化LVQ,解决网络对初始连接权值敏感的问题,增强网络对有载分接开关机械故障分类识别性能。通过对有载分接开关机械状态的实验分析,证明了相空间重构结合GSA-LVQ算法的可行性和有效性。 展开更多
关键词 有载调压变压器分接开关(OLTC) 互补集合经验模态分解(CEEMD) 相空间重构 万有引力搜索法(GSA) lvq神经网络 振动信号 机械故障诊断
在线阅读 下载PDF
基于MEA-LVQ神经网络的GIS特高频局部放电识别研究 被引量:3
17
作者 李亚 崔昊杨 +3 位作者 李鑫 刘晨斐 束江 许永鹏 《高压电器》 CAS CSCD 北大核心 2017年第6期61-66,共6页
针对学习向量量化(learning vector quantization,LVQ)神经网络在气体绝缘全封闭组合电器GIS特高频局部放电识别过程中存在初始权值敏感、竞争层未被充分利用的问题,提出了利用思维进化算法(mind evolutionary algorithm,MEA)优化LVQ神... 针对学习向量量化(learning vector quantization,LVQ)神经网络在气体绝缘全封闭组合电器GIS特高频局部放电识别过程中存在初始权值敏感、竞争层未被充分利用的问题,提出了利用思维进化算法(mind evolutionary algorithm,MEA)优化LVQ神经网络的GIS特高频局部放电识别模型。该模型采用K交叉验证来确定LVQ网络竞争层中最佳神经元数目,并在此基础上利用思维进化算法寻找LVQ网络的最优初始权值,构建最佳的局部放电识别网络模型。对比该模型和BP网络、LVQ网络以及K交叉验证LVQ网络的放电识别准确率,结果表明:MEA优化的LVQ神经网络具有更高的识别精度。文中的研究对于提高局部放电识别准确率具有一定的价值。 展开更多
关键词 思维进化算法 气体绝缘全封闭组合电器 K交叉验证 学习向量量化神经网络 放电识别
在线阅读 下载PDF
基于LVQ神经网络的改进覆盖算法 被引量:1
18
作者 李家兵 何富贵 《计算机工程与应用》 CSCD 2012年第17期165-169,共5页
覆盖算法是一种具有高分类准确度和强泛化能力的构造性神经网络分类算法。针对其选择覆盖中心的随意性,结合竞争性神经网络方法对覆盖算法进行改进,在覆盖学习之前进行预学习,选择最佳覆盖球形中心,来优化覆盖。通过标准UCI测试数据实... 覆盖算法是一种具有高分类准确度和强泛化能力的构造性神经网络分类算法。针对其选择覆盖中心的随意性,结合竞争性神经网络方法对覆盖算法进行改进,在覆盖学习之前进行预学习,选择最佳覆盖球形中心,来优化覆盖。通过标准UCI测试数据实验的比较,从分类的准确性和覆盖个数方面进行对比,得到改进的覆盖算法有很好的效果。 展开更多
关键词 分类 神经网络 覆盖算法 学习向量量化(lvq)
在线阅读 下载PDF
基于概率模型LVQ的改进KNN分类新方法 被引量:1
19
作者 刘仲民 徐炎 +1 位作者 赵彦敏 胡文瑾 《兰州理工大学学报》 CAS 北大核心 2013年第3期70-74,共5页
KNN是基于实例的算法,对于大规模样本算法分类性能不高.针对这一缺点,提出一种基于概率模型的学习矢量量化神经网络的改进KNN分类新方法.考虑到最优参考点训练的重要性,结合概率方法得到最佳参考点的判断准则函数,采用梯度下降最优化算... KNN是基于实例的算法,对于大规模样本算法分类性能不高.针对这一缺点,提出一种基于概率模型的学习矢量量化神经网络的改进KNN分类新方法.考虑到最优参考点训练的重要性,结合概率方法得到最佳参考点的判断准则函数,采用梯度下降最优化算法利用LVQ训练参考点的最佳位置.在对未知样本进行分类时选出样本x的K个近邻,采用"投票选举"机制最后判断样本x的所属类别.新方法减少KNN的计算复杂度和时间,弥补了KNN在处理大规模数据问题上的不足.在UCI中数据集上的仿真实验表明改进算法的可行性. 展开更多
关键词 K-近邻 学习矢量量化 模式分类 概率模型 大规模样本
在线阅读 下载PDF
LVQ人工神经网络在伤寒、副伤寒发生强度判别与预测中的应用 被引量:5
20
作者 黄德生 施海龙 +2 位作者 关鹏 曲波 周宝森 《中国医科大学学报》 CAS CSCD 北大核心 2005年第2期146-148,共3页
目的: 探讨学习矢量量化(LVQ)人工神经网络在伤寒、副伤寒发生强度判别与预测中的应用。方法:以前一年的平均气压、平均气温、平均降水量和平均蒸发量4个气象指标的标准化后的变量及伤寒、副伤寒发病率平方根反正弦变换值为研究自变量,... 目的: 探讨学习矢量量化(LVQ)人工神经网络在伤寒、副伤寒发生强度判别与预测中的应用。方法:以前一年的平均气压、平均气温、平均降水量和平均蒸发量4个气象指标的标准化后的变量及伤寒、副伤寒发病率平方根反正弦变换值为研究自变量,将1979-2000年辽宁省某市伤寒、副伤寒发病率按大小分为高、中、低3种情况进行判别与预测研究。利用软件MATLAB6. 5的人工神经网络工具箱分别进行LVQ人工神经网络的构建、训练与模拟,分别考察LVQ人工神经网络在模型拟合及前瞻性和回顾性预测方面的能力,并且与传统Bayes判别分析进行比较。结果: LVQ人工神经网络能够从另一个角度对数据进行分类判别与预测,利用1980-1995年数据拟合准确率为100%,预测1996-2000年发病强度准确度为3 /5;利用1982 -2000年数据拟合准确率为100%,预测1 9 8 0 -1 9 8 1年发病强度准确度为1 /2,均略高于传统Bayes判别分析。随机选择1 6年数据的拟合准确率为93. 8%,预测另外5年发病强度准确度为4 /5,与传统Bayes判别分析相当。结论: LVQ人工神经网络能够与传统Bayes判别分析相媲美,在发病率预测方面具有广阔应用前景。 展开更多
关键词 学习矢量量化 人工神经网络 判别分析
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部