A hydraulic position system was designed employing two high speed On/Off solenoid valves with PWM(Pulse width modulation) technique and using LQ(Linear Quadratic) optimization principle. Based on the system, the parts...A hydraulic position system was designed employing two high speed On/Off solenoid valves with PWM(Pulse width modulation) technique and using LQ(Linear Quadratic) optimization principle. Based on the system, the parts of system can be formulated with equations. According to equations, the mathematical model of the system was established. By simulation, the corresponding LQ optimal controller was designed and the PWM signals were generated. The comparison of the simulation and experiment results show that LQ optimal control method with PWM technique employing high speed On/Off solenoid valve can provide better system performance and a high position precision is obtained.展开更多
In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the...In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the solution of an algebraic Riccati equation (ARE) and makes the H∞norm of the closedloop transfer function matrix from disturbance inputs to controlled outputs less than a given constant which ensure the stability of the overall controlled system at each iteration. The given example shows that the convergence of the algorithm is satisfactory.展开更多
Reentry attitude control for reusable launch vehicles (RLVs) is challenging due to the characters of fast nonlinear dy- namics and large flight envelop. A hierarchical structured attitude control system for an RLV i...Reentry attitude control for reusable launch vehicles (RLVs) is challenging due to the characters of fast nonlinear dy- namics and large flight envelop. A hierarchical structured attitude control system for an RLV is proposed and an unpowered RLV con- trol model is developed. Then, the hierarchical structured control frame consisting of attitude controller, compound control strategy and control allocation is presented. At the core of the design is a robust adaptive control (RAC) law based on dual loop time-scale separation. A radial basis function neural network (RBFNN) is implemented for compensation of uncertain model dynamics and external disturbances in the inner loop. And then the robust op- timization is applied in the outer loop to guarantee performance robustness. The overall control design frame retains the simplicity in design while simultaneously assuring the adaptive and robust performance. The hierarchical structured robust adaptive con- troller (HSRAC) incorporates flexibility into the design with regard to controller versatility to various reentry mission requirements. Simulation results show that the improved tracking performance is achieved by means of RAC.展开更多
文摘A hydraulic position system was designed employing two high speed On/Off solenoid valves with PWM(Pulse width modulation) technique and using LQ(Linear Quadratic) optimization principle. Based on the system, the parts of system can be formulated with equations. According to equations, the mathematical model of the system was established. By simulation, the corresponding LQ optimal controller was designed and the PWM signals were generated. The comparison of the simulation and experiment results show that LQ optimal control method with PWM technique employing high speed On/Off solenoid valve can provide better system performance and a high position precision is obtained.
基金theNational+4 种基金 Natural Science Foundation of China
文摘In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the solution of an algebraic Riccati equation (ARE) and makes the H∞norm of the closedloop transfer function matrix from disturbance inputs to controlled outputs less than a given constant which ensure the stability of the overall controlled system at each iteration. The given example shows that the convergence of the algorithm is satisfactory.
基金National Natural Science Foundation of P. R. China (50477042)Ph. D. Programs Foundation of Ministry of Education of P.R.China (20040422052)the Natural Science Foundation of Shandong Province (Z2004G04)
基金supported by the National Natural Science Foundation of China(61174221)
文摘Reentry attitude control for reusable launch vehicles (RLVs) is challenging due to the characters of fast nonlinear dy- namics and large flight envelop. A hierarchical structured attitude control system for an RLV is proposed and an unpowered RLV con- trol model is developed. Then, the hierarchical structured control frame consisting of attitude controller, compound control strategy and control allocation is presented. At the core of the design is a robust adaptive control (RAC) law based on dual loop time-scale separation. A radial basis function neural network (RBFNN) is implemented for compensation of uncertain model dynamics and external disturbances in the inner loop. And then the robust op- timization is applied in the outer loop to guarantee performance robustness. The overall control design frame retains the simplicity in design while simultaneously assuring the adaptive and robust performance. The hierarchical structured robust adaptive con- troller (HSRAC) incorporates flexibility into the design with regard to controller versatility to various reentry mission requirements. Simulation results show that the improved tracking performance is achieved by means of RAC.