Knowledge transfer is widely emphasized as a strategic issue for firm competition. A model for intra-firm horizontal knowledge transfer is proposed to model horizontal knowledge transfer to solve some demerits in curr...Knowledge transfer is widely emphasized as a strategic issue for firm competition. A model for intra-firm horizontal knowledge transfer is proposed to model horizontal knowledge transfer to solve some demerits in current knowledge transfer researches. The concept model of intra-firm horizontal knowledge transfer was described and a framework was provided to define the main components of the transfer process. Horizontal knowledge transfer is that knowledge is transferred from the source to the same hierarchical level recipients as the target. Horizontal knowledge transfer constitutes a strategic area of knowledge management research. However, little is known about the circumstances under which one particular mechanism is the most appropriate. To address these issues, some significant conclusions are drawn concerning knowledge transfer mechanisms in a real-world setting.展开更多
In this paper, the reinforcement learning method for cooperative multi-agent systems(MAS) with incremental number of agents is studied. The existing multi-agent reinforcement learning approaches deal with the MAS with...In this paper, the reinforcement learning method for cooperative multi-agent systems(MAS) with incremental number of agents is studied. The existing multi-agent reinforcement learning approaches deal with the MAS with a specific number of agents, and can learn well-performed policies. However, if there is an increasing number of agents, the previously learned in may not perform well in the current scenario. The new agents need to learn from scratch to find optimal policies with others,which may slow down the learning speed of the whole team. To solve that problem, in this paper, we propose a new algorithm to take full advantage of the historical knowledge which was learned before, and transfer it from the previous agents to the new agents. Since the previous agents have been trained well in the source environment, they are treated as teacher agents in the target environment. Correspondingly, the new agents are called student agents. To enable the student agents to learn from the teacher agents, we first modify the input nodes of the networks for teacher agents to adapt to the current environment. Then, the teacher agents take the observations of the student agents as input, and output the advised actions and values as supervising information. Finally, the student agents combine the reward from the environment and the supervising information from the teacher agents, and learn the optimal policies with modified loss functions. By taking full advantage of the knowledge of teacher agents, the search space for the student agents will be reduced significantly, which can accelerate the learning speed of the holistic system. The proposed algorithm is verified in some multi-agent simulation environments, and its efficiency has been demonstrated by the experiment results.展开更多
In this paper,we study scene image recognition with knowledge transfer for drone navigation.We divide navigation scenes into three macro-classes,namely outdoor special scenes(OSSs),the space from indoors to outdoors o...In this paper,we study scene image recognition with knowledge transfer for drone navigation.We divide navigation scenes into three macro-classes,namely outdoor special scenes(OSSs),the space from indoors to outdoors or from outdoors to indoors transitional scenes(TSs),and others.However,there are difficulties in how to recognize the TSs,to this end,we employ deep convolutional neural network(CNN)based on knowledge transfer,techniques for image augmentation,and fine tuning to solve the issue.Moreover,there is still a novelty detection prob-lem in the classifier,and we use global navigation satellite sys-tems(GNSS)to solve it in the prediction stage.Experiment results show our method,with a pre-trained model and fine tun-ing,can achieve 91.3196%top-1 accuracy on Scenes21 dataset,paving the way for drones to learn to understand the scenes around them autonomously.展开更多
A study on knowledge transfer in a mutli-agent organization is performed by applying the basic principle in physics such as the kinetic theory.Based on the theoretical analysis of the knowledge accumulation process an...A study on knowledge transfer in a mutli-agent organization is performed by applying the basic principle in physics such as the kinetic theory.Based on the theoretical analysis of the knowledge accumulation process and knowledge transfer attributes,a special type of knowledge field(KF)is introduced and the knowledge diffusion equation(KDE)is developed.The evolution of knowledge potential is modeled by lattice kinetic equation and verified by numerical experiments.The new equation-based modeling developed in this paper is meaningful to simulate and predict the knowledge transfer process in firms.The development of the lattice kinetic model(LKM)for knowledge transfer can contribute to the knowledge management theory,and the managers can also simulate the knowledge accumulation process by using the LKM.展开更多
Person re-identification is a prevalent technology deployed on intelligent surveillance.There have been remarkable achievements in person re-identification methods based on the assumption that all person images have a...Person re-identification is a prevalent technology deployed on intelligent surveillance.There have been remarkable achievements in person re-identification methods based on the assumption that all person images have a sufficiently high resolution,yet such models are not applicable to the open world.In real world,the changing distance between pedestrians and the camera renders the resolution of pedestrians captured by the camera inconsistent.When low-resolution(LR)images in the query set are matched with high-resolution(HR)images in the gallery set,it degrades the performance of the pedestrian matching task due to the absent pedestrian critical information in LR images.To address the above issues,we present a dualstream coupling network with wavelet transform(DSCWT)for the cross-resolution person re-identification task.Firstly,we use the multi-resolution analysis principle of wavelet transform to separately process the low-frequency and high-frequency regions of LR images,which is applied to restore the lost detail information of LR images.Then,we devise a residual knowledge constrained loss function that transfers knowledge between the two streams of LR images and HR images for accessing pedestrian invariant features at various resolutions.Extensive qualitative and quantitative experiments across four benchmark datasets verify the superiority of the proposed approach.展开更多
文摘Knowledge transfer is widely emphasized as a strategic issue for firm competition. A model for intra-firm horizontal knowledge transfer is proposed to model horizontal knowledge transfer to solve some demerits in current knowledge transfer researches. The concept model of intra-firm horizontal knowledge transfer was described and a framework was provided to define the main components of the transfer process. Horizontal knowledge transfer is that knowledge is transferred from the source to the same hierarchical level recipients as the target. Horizontal knowledge transfer constitutes a strategic area of knowledge management research. However, little is known about the circumstances under which one particular mechanism is the most appropriate. To address these issues, some significant conclusions are drawn concerning knowledge transfer mechanisms in a real-world setting.
基金supported by the National Key R&D Program of China (2018AAA0101400)the National Natural Science Foundation of China (62173251+3 种基金61921004U1713209)the Natural Science Foundation of Jiangsu Province of China (BK20202006)the Guangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control。
文摘In this paper, the reinforcement learning method for cooperative multi-agent systems(MAS) with incremental number of agents is studied. The existing multi-agent reinforcement learning approaches deal with the MAS with a specific number of agents, and can learn well-performed policies. However, if there is an increasing number of agents, the previously learned in may not perform well in the current scenario. The new agents need to learn from scratch to find optimal policies with others,which may slow down the learning speed of the whole team. To solve that problem, in this paper, we propose a new algorithm to take full advantage of the historical knowledge which was learned before, and transfer it from the previous agents to the new agents. Since the previous agents have been trained well in the source environment, they are treated as teacher agents in the target environment. Correspondingly, the new agents are called student agents. To enable the student agents to learn from the teacher agents, we first modify the input nodes of the networks for teacher agents to adapt to the current environment. Then, the teacher agents take the observations of the student agents as input, and output the advised actions and values as supervising information. Finally, the student agents combine the reward from the environment and the supervising information from the teacher agents, and learn the optimal policies with modified loss functions. By taking full advantage of the knowledge of teacher agents, the search space for the student agents will be reduced significantly, which can accelerate the learning speed of the holistic system. The proposed algorithm is verified in some multi-agent simulation environments, and its efficiency has been demonstrated by the experiment results.
基金supported by the National Natural Science Foundation of China(62103104)the Natural Science Foundation of Jiangsu Province(BK20210215)the China Postdoctoral Science Foundation(2021M690615).
文摘In this paper,we study scene image recognition with knowledge transfer for drone navigation.We divide navigation scenes into three macro-classes,namely outdoor special scenes(OSSs),the space from indoors to outdoors or from outdoors to indoors transitional scenes(TSs),and others.However,there are difficulties in how to recognize the TSs,to this end,we employ deep convolutional neural network(CNN)based on knowledge transfer,techniques for image augmentation,and fine tuning to solve the issue.Moreover,there is still a novelty detection prob-lem in the classifier,and we use global navigation satellite sys-tems(GNSS)to solve it in the prediction stage.Experiment results show our method,with a pre-trained model and fine tun-ing,can achieve 91.3196%top-1 accuracy on Scenes21 dataset,paving the way for drones to learn to understand the scenes around them autonomously.
基金supported by the National Natural Science Foundation of China(71472055 71871007)+2 种基金National Social Science Foundation of China(16AZD0006)Heilongjiang Philosophy and Social Science Research Project(19GLB087)the Fundamental Research Funds for the Central Universities(HIT.NSRIF.2019033)
文摘A study on knowledge transfer in a mutli-agent organization is performed by applying the basic principle in physics such as the kinetic theory.Based on the theoretical analysis of the knowledge accumulation process and knowledge transfer attributes,a special type of knowledge field(KF)is introduced and the knowledge diffusion equation(KDE)is developed.The evolution of knowledge potential is modeled by lattice kinetic equation and verified by numerical experiments.The new equation-based modeling developed in this paper is meaningful to simulate and predict the knowledge transfer process in firms.The development of the lattice kinetic model(LKM)for knowledge transfer can contribute to the knowledge management theory,and the managers can also simulate the knowledge accumulation process by using the LKM.
基金supported by the National Natural Science Foundation of China(61471154,61876057)the Key Research and Development Program of Anhui Province-Special Project of Strengthening Science and Technology Police(202004D07020012).
文摘Person re-identification is a prevalent technology deployed on intelligent surveillance.There have been remarkable achievements in person re-identification methods based on the assumption that all person images have a sufficiently high resolution,yet such models are not applicable to the open world.In real world,the changing distance between pedestrians and the camera renders the resolution of pedestrians captured by the camera inconsistent.When low-resolution(LR)images in the query set are matched with high-resolution(HR)images in the gallery set,it degrades the performance of the pedestrian matching task due to the absent pedestrian critical information in LR images.To address the above issues,we present a dualstream coupling network with wavelet transform(DSCWT)for the cross-resolution person re-identification task.Firstly,we use the multi-resolution analysis principle of wavelet transform to separately process the low-frequency and high-frequency regions of LR images,which is applied to restore the lost detail information of LR images.Then,we devise a residual knowledge constrained loss function that transfers knowledge between the two streams of LR images and HR images for accessing pedestrian invariant features at various resolutions.Extensive qualitative and quantitative experiments across four benchmark datasets verify the superiority of the proposed approach.