Kernal factor analysis (KFA) with vafimax was proposed by using Mercer kernel function which can map the data in the original space to a high-dimensional feature space, and was compared with the kernel principle com...Kernal factor analysis (KFA) with vafimax was proposed by using Mercer kernel function which can map the data in the original space to a high-dimensional feature space, and was compared with the kernel principle component analysis (KPCA). The results show that the best error rate in handwritten digit recognition by kernel factor analysis with vadmax (4.2%) was superior to KPCA (4.4%). The KFA with varimax could more accurately image handwritten digit recognition.展开更多
How to fit a properly nonlinear classification model from conventional well logs to lithofacies is a key problem for machine learning methods.Kernel methods(e.g.,KFD,SVM,MSVM)are effective attempts to solve this issue...How to fit a properly nonlinear classification model from conventional well logs to lithofacies is a key problem for machine learning methods.Kernel methods(e.g.,KFD,SVM,MSVM)are effective attempts to solve this issue due to abilities of handling nonlinear features by kernel functions.Deep mining of log features indicating lithofacies still needs to be improved for kernel methods.Hence,this work employs deep neural networks to enhance the kernel principal component analysis(KPCA)method and proposes a deep kernel method(DKM)for lithofacies identification using well logs.DKM includes a feature extractor and a classifier.The feature extractor consists of a series of KPCA models arranged according to residual network structure.A gradient-free optimization method is introduced to automatically optimize parameters and structure in DKM,which can avoid complex tuning of parameters in models.To test the validation of the proposed DKM for lithofacies identification,an open-sourced dataset with seven con-ventional logs(GR,CAL,AC,DEN,CNL,LLD,and LLS)and lithofacies labels from the Daniudi Gas Field in China is used.There are eight lithofacies,namely clastic rocks(pebbly,coarse,medium,and fine sand-stone,siltstone,mudstone),coal,and carbonate rocks.The comparisons between DKM and three commonly used kernel methods(KFD,SVM,MSVM)show that(1)DKM(85.7%)outperforms SVM(77%),KFD(79.5%),and MSVM(82.8%)in accuracy of lithofacies identification;(2)DKM is about twice faster than the multi-kernel method(MSVM)with good accuracy.The blind well test in Well D13 indicates that compared with the other three methods DKM improves about 24%in accuracy,35%in precision,41%in recall,and 40%in F1 score,respectively.In general,DKM is an effective method for complex lithofacies identification.This work also discussed the optimal structure and classifier for DKM.Experimental re-sults show that(m_(1),m_(2),O)is the optimal model structure and linear svM is the optimal classifier.(m_(1),m_(2),O)means there are m KPCAs,and then m2 residual units.A workflow to determine an optimal classifier in DKM for lithofacies identification is proposed,too.展开更多
Traditional fire smoke detection methods mostly rely on manual algorithm extraction and sensor detection;however,these methods are slow and expensive to achieve discrimination.We proposed an improved convolutional neu...Traditional fire smoke detection methods mostly rely on manual algorithm extraction and sensor detection;however,these methods are slow and expensive to achieve discrimination.We proposed an improved convolutional neural network(CNN)to achieve fast analysis.The improved CNN can be used to liberate manpower.The network does not require complicated manual feature extraction to identify forest fire smoke.First,to alleviate the computational pressure and speed up the discrimination efficiency,kernel principal component analysis was performed on the experimental data set.To improve the robustness of the CNN and to avoid overfitting,optimization strategies were applied in multi-convolution kernels and batch normalization to improve loss functions.The experimental analysis shows that the CNN proposed in this study can learn the feature information automatically for smoke images in the early stages of fire automatically with a high recognition rate.As a result,the improved CNN enriches the theory of smoke discrimination in the early stages of a forest fire.展开更多
A set of methods for predicting the favorable reservoir of deep shale gas based on machine learning is proposed through research of parameter correlation feature analysis principle, intelligent prediction method based...A set of methods for predicting the favorable reservoir of deep shale gas based on machine learning is proposed through research of parameter correlation feature analysis principle, intelligent prediction method based on convolution neural network(CNN), and integrated fusion characterization method based on kernel principal component analysis(KPCA) nonlinear dimension reduction principle.(1) High-dimensional correlation characteristics of core and logging data are analyzed based on the Pearson correlation coefficient.(2) The nonlinear dimension reduction method of KPCA is used to characterize complex high-dimensional data to efficiently and accurately understand the core and logging response laws to favorable reservoirs.(3) CNN and logging data are used to train and verify the model similar to the underground reservoir.(4) CNN and seismic data are used to intelligently predict favorable reservoir parameters such as organic carbon content, gas content, brittleness and in-situ stress to effectively solve the problem of nonlinear and complex feature extraction in reservoir prediction.(5) KPCA is used to eliminate complex redundant information, mine big data characteristics of favorable reservoirs, and integrate and characterize various parameters to comprehensively evaluate reservoirs. This method has been used to predict the spatial distribution of favorable shale reservoirs in the Ordovician Wufeng Formation to the Silurian Longmaxi Formation of the Weirong shale gas field in the Sichuan Basin, SW China. The predicted results are highly consistent with the actual core, logging and productivity data, proving that this method can provide effective support for the exploration and development of deep shale gas.展开更多
基金The National Defence Foundation of China (No.NEWL51435Qt220401)
文摘Kernal factor analysis (KFA) with vafimax was proposed by using Mercer kernel function which can map the data in the original space to a high-dimensional feature space, and was compared with the kernel principle component analysis (KPCA). The results show that the best error rate in handwritten digit recognition by kernel factor analysis with vadmax (4.2%) was superior to KPCA (4.4%). The KFA with varimax could more accurately image handwritten digit recognition.
基金supported by the National Natural Science Foundation of China(Grant No.42002134)China Postdoctoral Science Foundation(Grant No.2021T140735)Science Foundation of China University of Petroleum,Beijing(Grant Nos.2462020XKJS02 and 2462020YXZZ004).
文摘How to fit a properly nonlinear classification model from conventional well logs to lithofacies is a key problem for machine learning methods.Kernel methods(e.g.,KFD,SVM,MSVM)are effective attempts to solve this issue due to abilities of handling nonlinear features by kernel functions.Deep mining of log features indicating lithofacies still needs to be improved for kernel methods.Hence,this work employs deep neural networks to enhance the kernel principal component analysis(KPCA)method and proposes a deep kernel method(DKM)for lithofacies identification using well logs.DKM includes a feature extractor and a classifier.The feature extractor consists of a series of KPCA models arranged according to residual network structure.A gradient-free optimization method is introduced to automatically optimize parameters and structure in DKM,which can avoid complex tuning of parameters in models.To test the validation of the proposed DKM for lithofacies identification,an open-sourced dataset with seven con-ventional logs(GR,CAL,AC,DEN,CNL,LLD,and LLS)and lithofacies labels from the Daniudi Gas Field in China is used.There are eight lithofacies,namely clastic rocks(pebbly,coarse,medium,and fine sand-stone,siltstone,mudstone),coal,and carbonate rocks.The comparisons between DKM and three commonly used kernel methods(KFD,SVM,MSVM)show that(1)DKM(85.7%)outperforms SVM(77%),KFD(79.5%),and MSVM(82.8%)in accuracy of lithofacies identification;(2)DKM is about twice faster than the multi-kernel method(MSVM)with good accuracy.The blind well test in Well D13 indicates that compared with the other three methods DKM improves about 24%in accuracy,35%in precision,41%in recall,and 40%in F1 score,respectively.In general,DKM is an effective method for complex lithofacies identification.This work also discussed the optimal structure and classifier for DKM.Experimental re-sults show that(m_(1),m_(2),O)is the optimal model structure and linear svM is the optimal classifier.(m_(1),m_(2),O)means there are m KPCAs,and then m2 residual units.A workflow to determine an optimal classifier in DKM for lithofacies identification is proposed,too.
基金National Natural Science Foundation of China(31670717)Natural Science Foundation of Heilongjiang Province(LH2020C051)。
文摘Traditional fire smoke detection methods mostly rely on manual algorithm extraction and sensor detection;however,these methods are slow and expensive to achieve discrimination.We proposed an improved convolutional neural network(CNN)to achieve fast analysis.The improved CNN can be used to liberate manpower.The network does not require complicated manual feature extraction to identify forest fire smoke.First,to alleviate the computational pressure and speed up the discrimination efficiency,kernel principal component analysis was performed on the experimental data set.To improve the robustness of the CNN and to avoid overfitting,optimization strategies were applied in multi-convolution kernels and batch normalization to improve loss functions.The experimental analysis shows that the CNN proposed in this study can learn the feature information automatically for smoke images in the early stages of fire automatically with a high recognition rate.As a result,the improved CNN enriches the theory of smoke discrimination in the early stages of a forest fire.
基金National Natural Science Foundation of China General Project(42074160,41574099)Sinopec"Ten Dragons"Project(P20052-3)。
文摘A set of methods for predicting the favorable reservoir of deep shale gas based on machine learning is proposed through research of parameter correlation feature analysis principle, intelligent prediction method based on convolution neural network(CNN), and integrated fusion characterization method based on kernel principal component analysis(KPCA) nonlinear dimension reduction principle.(1) High-dimensional correlation characteristics of core and logging data are analyzed based on the Pearson correlation coefficient.(2) The nonlinear dimension reduction method of KPCA is used to characterize complex high-dimensional data to efficiently and accurately understand the core and logging response laws to favorable reservoirs.(3) CNN and logging data are used to train and verify the model similar to the underground reservoir.(4) CNN and seismic data are used to intelligently predict favorable reservoir parameters such as organic carbon content, gas content, brittleness and in-situ stress to effectively solve the problem of nonlinear and complex feature extraction in reservoir prediction.(5) KPCA is used to eliminate complex redundant information, mine big data characteristics of favorable reservoirs, and integrate and characterize various parameters to comprehensively evaluate reservoirs. This method has been used to predict the spatial distribution of favorable shale reservoirs in the Ordovician Wufeng Formation to the Silurian Longmaxi Formation of the Weirong shale gas field in the Sichuan Basin, SW China. The predicted results are highly consistent with the actual core, logging and productivity data, proving that this method can provide effective support for the exploration and development of deep shale gas.