期刊文献+
共找到146篇文章
< 1 2 8 >
每页显示 20 50 100
基于容量增量分析与VMD-GWO-KELM的锂电池健康状态估计
1
作者 陈峥 多功东 +3 位作者 申江卫 沈世全 刘昱 魏福星 《储能科学与技术》 北大核心 2025年第6期2476-2487,共12页
为克服传统健康状态估计方法中的特征提取质量不足、非线性特性复杂及模型参数优化困难等问题,本工作提出一种基于容量增量分析与VMD-GWO-KELM的健康状态估计方法。首先,本工作通过改进的基于洛伦兹函数的电压容量模型,对电池恒流充电... 为克服传统健康状态估计方法中的特征提取质量不足、非线性特性复杂及模型参数优化困难等问题,本工作提出一种基于容量增量分析与VMD-GWO-KELM的健康状态估计方法。首先,本工作通过改进的基于洛伦兹函数的电压容量模型,对电池恒流充电过程中的电压-容量数据进行拟合,提取峰电压、峰值和峰面积等健康特征,并利用灰狼优化算法完成模型参数识别,从而有效提升了特征提取质量和鲁棒性。其次,采用变分模态分解技术对健康状态信号进行多尺度分解,将模态分量作为独立子模型的输入,捕捉不同频域的关键特性,降低了信号混叠和噪声影响。然后,结合灰狼优化算法对核极限学习机模型的关键参数进行优化,显著提高了非线性拟合能力和估计精度。最后,通过不同训练量、不同估计模型对比和多电池数据的验证,全面评估模型性能。实验结果表明,本工作提出的算法在仅使用100次循环数据的情况下,即可实现高精度健康状态估计,平均绝对误差为0.9751%,最大误差为1.9340%,同时表现出良好的鲁棒性和泛化能力。 展开更多
关键词 锂离子电池 健康状态 容量增量分析 变分模态分解 灰狼优化 核极限学习机
在线阅读 下载PDF
适应拓扑变化的数据驱动电力系统暂态主导失稳模式识别方法 被引量:1
2
作者 周芮 杨燕 +4 位作者 余娟 杨知方 朱晟毅 余亚南 孙昕炜 《中国电机工程学报》 北大核心 2025年第9期3436-3447,I0013,共13页
电力系统暂态电压与功角混合失稳下的主导失稳模式(dominant instability mode,DIM)识别对制定快速调整措施至关重要。然而,现有数据驱动方法因拓扑变化适应能力不足,导致识别精度下降甚至失效。由此,该文提出一种适应拓扑变化的数据驱... 电力系统暂态电压与功角混合失稳下的主导失稳模式(dominant instability mode,DIM)识别对制定快速调整措施至关重要。然而,现有数据驱动方法因拓扑变化适应能力不足,导致识别精度下降甚至失效。由此,该文提出一种适应拓扑变化的数据驱动DIM识别方法。首先,提出基于K-means聚类和多随机卷积核变换的DIM高精度智能识别基础模型,利用K-means自适应选取关键暂态曲线,基于多随机卷积核变换表征暂态曲线斜率、失稳持续时间等重要DIM判断特征,从而适应拓扑变化并高效提取暂态曲线时序特征。其次,针对单个基础模型输出不确定性、可信度不足问题,提出基于Bagging集成学习和误差-分歧分解理论的DIM智能识别框架,自适应最优选择多个基础模型共同决策,提高结果的稳定性和可信性。最后,在中国电力科学研究院有限公司36节点系统及其修改系统、某实际电网8897节点系统上的算例分析表明,所提方法可在保证较高DIM识别精度的情况下适应拓扑变化,验证了方法的有效性。 展开更多
关键词 暂态稳定 主导失稳模式 关键曲线选取 多随机卷积核变换 集成学习
在线阅读 下载PDF
基于组合深度学习的风电功率区间预测
3
作者 蒋建东 赵云飞 +3 位作者 韩文轩 燕跃豪 鲍薇 刘晓辉 《郑州大学学报(工学版)》 北大核心 2025年第3期50-58,共9页
为了提高风电功率区间预测的精度,提出了一种基于组合深度学习的风电功率区间预测模型。首先,针对传统蜣螂优化算法(DBO)存在全局寻优能力和局部探索能力不均衡的问题,提出了一种改进的蜣螂优化算法(POTDBO)。该算法通过增强全局寻优能... 为了提高风电功率区间预测的精度,提出了一种基于组合深度学习的风电功率区间预测模型。首先,针对传统蜣螂优化算法(DBO)存在全局寻优能力和局部探索能力不均衡的问题,提出了一种改进的蜣螂优化算法(POTDBO)。该算法通过增强全局寻优能力并改进局部探索策略,优化变分模态分解(VMD)中的分解个数K和惩罚因子β,从而提高VMD的分解效果。其次,基于优化后的VMD分解结果,构建了组合深度学习模型POTDBO-VMD-CNN-BiLSTM。该模型利用卷积神经网络(CNN)提取风电功率的空间特征,并结合双向长短期记忆网络(BiLSTM)充分捕捉数据中的历史信号特征和未来信号特征,对各分量分别预测并叠加重构,从而实现了风电功率的准确预测。再次,引入了非参数核密度估计法(KDE)对组合模型的预测误差进行拟合,从而得到不同置信区间下的风电功率区间预测结果。最后,运用新疆某风电场的实际运行数据对所提模型进行了验证。仿真结果表明:在置信水平为95%时,与高斯分布、T分布相比,所提方法在预测区间覆盖宽度CWC上分别降低了0.1036,0.1714,在区间预测精度上有所提升。 展开更多
关键词 风电功率区间预测 蜣螂优化算法 变分模态分解 非参数核密度估计
在线阅读 下载PDF
顾及导热系数与冻土环境变量的高铁路基冻深预测LSTM模型构建及应用
4
作者 张超越 魏冠军 《铁道科学与工程学报》 北大核心 2025年第8期3352-3363,共12页
提高季节性冻土区高铁路基冻深预测精度,对保证寒区高速铁路的安全调度和平稳运行具有重要意义。针对现有季冻区高铁路基冻深预测模型缺乏利用多元环境序列信息的问题,提出一种顾及导热系数与冻土环境变量的高铁路基冻深预测LSTM模型,... 提高季节性冻土区高铁路基冻深预测精度,对保证寒区高速铁路的安全调度和平稳运行具有重要意义。针对现有季冻区高铁路基冻深预测模型缺乏利用多元环境序列信息的问题,提出一种顾及导热系数与冻土环境变量的高铁路基冻深预测LSTM模型,以兰新高铁山丹马场−民乐路段DK371+900、DK383+345和DK391+9403处断面为例,对2015-2017年冻深快速增长期的路基冻深进行预测。该模型首先利用EMD算法对导热系数与冻土环境变量时序数据进行信号分解,得到一系列具有不同特征尺度的数据序列,体现出原数据的趋势与波动性,增加数据的细节和多样性;再利用KPCA算法提取出影响路基冻深的关键因子,实现数据降维,消除因EMD产生的数据冗余;最后通过LSTM网络实现基于多变量的路基冻深预测。研究结果表明:该模型较传统路基冻深预测模型、EMD-LSTM模型、多变量BP神经网络模型、多变量LSTM模型有更高的精确度。模型在3处断面路基冻深预测的平均绝对误差(f_(mae))为0.029、0.033和0.060 m;均方根误差(f_(rmse))为0.036、0.042和0.075 m;拟合优度(R2)为0.924、0.949和0.906。其f_(mae)与f_(rmse)相比于传统路基冻深预测模型最高降低了89.1%和86.8%;相比于EMD-LSTM模型最高降低了87.7%和85.7%;相比于多变量BP神经网络模型最高降低了66.3%和64.7%;相比于多变量LSTM模型最高降低了60.2%和56.7%。研究结果可为季节性冻土区高铁路基冻深预测提供一种新的参考。 展开更多
关键词 高铁路基 经验模态分解 核主成分分析 长短期记忆神经网络 冻结深度预测
在线阅读 下载PDF
Kernel模式与虚拟设备
5
作者 王沛 袁晓兵 王国辉 《光学精密工程》 EI CAS CSCD 1999年第3期58-63,共6页
由于Windows操作系统不允许直接访问硬件,给图像的实时采集、存储、显示等处理工作带来了很大困难。本文提出在Kernel模式下采用编制虚拟设备驱动程序的方法,对于图像处理工作所要求的实时性及同步性在软件方面提出了一... 由于Windows操作系统不允许直接访问硬件,给图像的实时采集、存储、显示等处理工作带来了很大困难。本文提出在Kernel模式下采用编制虚拟设备驱动程序的方法,对于图像处理工作所要求的实时性及同步性在软件方面提出了一种解决方案。 展开更多
关键词 WINDOWS kernel模式 虚拟设备 图像处理
在线阅读 下载PDF
基于多任务学习组合模型的万能式断路器故障诊断方法
6
作者 王钰洁 赖冬明 +2 位作者 王立军 陈仁祥 何家乐 《高电压技术》 北大核心 2025年第5期2394-2403,共10页
针对万能式断路器的振动信号存在个体样本差异性、噪声干扰和分类器的参数难以确定等问题,提出一种基于多任务学习组合模型的万能式断路器故障诊断方法。首先,使用多元变经验模态分解(multivariate variational mode decomposition,MVMD... 针对万能式断路器的振动信号存在个体样本差异性、噪声干扰和分类器的参数难以确定等问题,提出一种基于多任务学习组合模型的万能式断路器故障诊断方法。首先,使用多元变经验模态分解(multivariate variational mode decomposition,MVMD)对振动信号进行分解并获取满足阈值要求的模态分量(intrinsic mode functions,IMFs),精准地对其进行时域和频域特征提取,减少噪声干扰和信号差异性造成的影响;再利用核主元分析(kernel principal component analysis,KPCA)算法对特征数据集进行降维;对比不同特征提取方法并验证MVMD-KPCA有效性与优势。用改进北方苍鹰优化(improved northern goshawk optimization,INGO)算法对核极限学习机(kernel extreme learning machine,KELM)的参数进行寻优,提升KELM的分类性能。最后,将降维的特征数据集输入INGO-KELM等模型中进行对比。结果表明:MVMD-KPCA方法在处理复杂、非线性数据集时表现出色,MVMD-KPCA与INGO-KELM相比于其他对比模型,此模型对万能式断路器的平均诊断精度能到达99.83%,具有更强的预测能力和稳定性。 展开更多
关键词 万能式断路器 故障诊断 多元变经验模态分解 改进北方苍鹰优化算法 核极限学习机
在线阅读 下载PDF
基于IGWO-VMD-EMD-KELM联合预测模型的海上短期风速预测
7
作者 刘轲 张潇阳 +4 位作者 贾子晖 周彩凤 程浩宇 林瑞阳 魏子宸 《绿色科技》 2025年第10期222-228,共7页
准确、可靠的风速预测有利于保障电力系统的安全运行。为提高预测精度,提出一种融合变分模态分解(VMD)、经验模态分解(EMD)、改进灰狼优化算法(IGWO)以及核极限学习机(KELM)的短期风速预测模型。首先利用IGWO对VMD参数进行智能优化。之... 准确、可靠的风速预测有利于保障电力系统的安全运行。为提高预测精度,提出一种融合变分模态分解(VMD)、经验模态分解(EMD)、改进灰狼优化算法(IGWO)以及核极限学习机(KELM)的短期风速预测模型。首先利用IGWO对VMD参数进行智能优化。之后利用VMD将风速数据分解为若干子序列和残差项。针对残差项具有较强非平稳性的问题,利用EMD对残差项进一步分解。最后对各子序列分别利用KELM模型进行预测,并将各子序列预测结果叠加得到最终预测结果。结果表明:该模型的评价指标R 2达到了98.865%,相较于其他对比模型具有更高的预测精度。 展开更多
关键词 风速预测 变分模态分解 经验模态分解 改进灰狼优化算法 核极限学习机
在线阅读 下载PDF
基于改进K-modes聚类的KNN分类算法 被引量:25
8
作者 王志华 刘绍廷 罗齐 《计算机工程与设计》 北大核心 2019年第8期2228-2234,共7页
为解决K-modes算法初始化k簇时误差率较高和KNN(K最近邻算法)算法面对大样本数据量时分类不准确的现状,分析传统的K-modes算法从k簇的初始化到簇中心不再变化的全过程和KNN(K最近邻算法)算法在面对大样本数据时执行效率低下的问题,提出... 为解决K-modes算法初始化k簇时误差率较高和KNN(K最近邻算法)算法面对大样本数据量时分类不准确的现状,分析传统的K-modes算法从k簇的初始化到簇中心不再变化的全过程和KNN(K最近邻算法)算法在面对大样本数据时执行效率低下的问题,提出改进的K-modes-KNN算法。使用字符串核函数初始化k簇,字符串核函数迭代计算样本到簇中心的距离来动态改变簇中心,利用改进的K-modes算法将数据集进行分簇处理后,在每个子簇中建立KNN(K最近邻算法)分类模型。通过真实数据验证了所提算法在一定程度上优于同种分类算法。 展开更多
关键词 K-modes算法 KNN算法 分类 簇中心 K-modes-KNN算法 字符串核函数
在线阅读 下载PDF
众数自适应Lasso回归的统计推断 被引量:3
9
作者 叶五一 许寅聪 焦守坤 《应用概率统计》 CSCD 北大核心 2024年第1期107-121,共15页
本文给出了自适应Lasso的众数回归模型,用来对众数回归模型的变量进行选择.对比传统的均值回归模型和中位数回归模型,众数回归在解决重尾、多峰分布问题时更加稳健.众数回归模型的主要估计方法是核估计方法,当自变量的数目较大时,该方... 本文给出了自适应Lasso的众数回归模型,用来对众数回归模型的变量进行选择.对比传统的均值回归模型和中位数回归模型,众数回归在解决重尾、多峰分布问题时更加稳健.众数回归模型的主要估计方法是核估计方法,当自变量的数目较大时,该方法会产生难以忽略的计算误差.本文在核估计方法的众数回归模型基础上添加惩罚项,并通过自适应Lasso方法进行参数估计,有效的剔除了贡献率低的自变量,同时提高了计算的准确性.本文详细阐述了该计算方法,并在一些正则条件下,给出了模型的参数的估计方法和估计值的渐近正态性.模拟实验和实证分析研究了所提方法在有限样本下的性质.对比均值回归模型和传统的众数回归模型,添加自适应Lasso惩罚项的众数回归模型极大地提高了参数估计的准确性. 展开更多
关键词 众数 核函数 EM算法 自适应Lasso回归
在线阅读 下载PDF
基于变分模态分解的弹性参数核密度估计方法 被引量:5
10
作者 朱鑫杰 张宏兵 +1 位作者 曾繁鑫 祝新益 《科学技术与工程》 北大核心 2024年第10期4005-4012,共8页
概率密度建模是地震随机模拟中至关重要的环节,而弹性参数高频成分的概率密度估计决定了高分辨率地震随机模拟结果的精度。针对常规方法中弹性参数高频成分提取精度不足、概率密度建模先验条件过度约束以及弹性参数的概率密度建模分层... 概率密度建模是地震随机模拟中至关重要的环节,而弹性参数高频成分的概率密度估计决定了高分辨率地震随机模拟结果的精度。针对常规方法中弹性参数高频成分提取精度不足、概率密度建模先验条件过度约束以及弹性参数的概率密度建模分层设计等问题,提出了一种基于变分模态分解(variational mode decomposition,VMD)的弹性参数核密度估计方法。该方法首先采用VMD对测井弹性参数数据进行模态分解,筛选出本征模态函数(intrinsic mode function,IMF)中的高频项叠加得到测井弹性参数的高频成分;然后使用核密度估计分层计算得到高频成分的概率密度模型,并通过该模型进行随机抽样生成随机高频成分叠加至井旁地震数据上以达到丰富地震弹性参数数据高频内容的目的。珠江口盆地34号井区的实验结果显示,VMD有效分离出了中心频率在70 Hz以上的测井弹性参数高频成分,分层设计的核密度估计方法凸显了高频成分的统计规律,叠加随机高频成分后地震弹性参数70 Hz以上的高频成分得到了明显补充。该方法为地震高分辨率随机模拟提供了新的思路。 展开更多
关键词 高分辨率 地震数据 弹性参数 变分模态分解 核密度估计
在线阅读 下载PDF
变频器负载回路串联故障电弧检测及选线方法 被引量:1
11
作者 蔡佳成 高洪鑫 +2 位作者 王智勇 徐佳宁 彭继慎 《电子测量与仪器学报》 CSCD 北大核心 2024年第7期247-256,共10页
串联故障电弧的高温是引发电气火灾的主要原因之一,针对工业变频器负载回路中串联故障电弧尚无有效保护手段的问题,提出了一种新的串联故障电弧检测及选线方法。首先,针对工业领域常用的三相变频器负载回路开展了不同线路中发生串联故... 串联故障电弧的高温是引发电气火灾的主要原因之一,针对工业变频器负载回路中串联故障电弧尚无有效保护手段的问题,提出了一种新的串联故障电弧检测及选线方法。首先,针对工业领域常用的三相变频器负载回路开展了不同线路中发生串联故障电弧的实验;其次,利用基于能量收敛原则改进的变分模态分解将变频器前端A相电流信号自适应分解为多个模态分量,依次将单个模态分量乘以能量系数并重构,得到多个电流信号的特征增强信号,并建立特征矩阵;再次,对特征矩阵进行分块,利用核主成分分析对每块矩阵进行降维,并对降维信号组成的矩阵进行二次降维构建故障特征向量;最后,利用鹈鹕算法优化的支持向量机对串联故障电弧进行检测及选线。结果表明:该方法仅通过分析变频器前端A相电流可以实现变频器整个回路中6条线路的串联故障电弧检测及选线,检测及选线准确率均达到98%以上。 展开更多
关键词 故障电弧 故障检测及选线 变分模态分解 核主成分分析 支持向量机
在线阅读 下载PDF
基于GRO优化的VMD-HKELM月蒸发量预测方法研究 被引量:2
12
作者 李菊 崔东文 《水文》 CSCD 北大核心 2024年第5期25-31,共7页
水面蒸发预测对于水库水量预测、区域水量平衡分析和水资源量核算等具有重要意义。水面蒸发量预测影响因素众多,并最终体现在随时间变化的蒸发量监测数据中。为此,基于淘金热(GRO)算法优化变分模态分解(VMD)-混合核极限学习机(HKELM)提... 水面蒸发预测对于水库水量预测、区域水量平衡分析和水资源量核算等具有重要意义。水面蒸发量预测影响因素众多,并最终体现在随时间变化的蒸发量监测数据中。为此,基于淘金热(GRO)算法优化变分模态分解(VMD)-混合核极限学习机(HKELM)提出两种方案。方案Ⅰ先对月蒸发量时间序列分解,后划分训练集、测试集;方案Ⅱ先对月蒸发量划分训练集、测试集,再进行时间序列分解。通过一种新型元启发式算法对分解技术VMD、预测器HKELM超参数进行目标寻优并建立多种模型,采用云南省龙潭寨、西洋街水文站月蒸发量预测实例对方案Ⅰ、方案Ⅱ各模型进行检验。结果表明:方案Ⅰ各模型性能优于方案Ⅱ,各模型的拟合精度和预测精度总体上随分解分量数的增加而提高,但方案Ⅰ使用了测试集信息,导致预测精度虚高;方案Ⅱ各模型具有较好的预测精度和稳健性能,其用于月蒸发量时间序列预测是可行的,反映出客观真实的预测效果,具有较好的实用价值和意义。 展开更多
关键词 变分模态分解 淘金热优化算法 混合核极限学习机 超参数优化 月蒸发量预测
在线阅读 下载PDF
基于VMD-SSA-HKELM的短期光伏功率预测 被引量:3
13
作者 杨荔强 崔双喜 《电源技术》 CAS 北大核心 2024年第6期1154-1159,共6页
为提高光伏功率的短期预测精度,提出一种变分模态分解(VMD)与麻雀搜索算法(SSA)优化混合核极限学习机(HKELM)相结合的短期光伏发电功率预测模型。运用皮尔逊相关系数(PCC)选取与光伏发电功率相关性较强的气象因素作为预测模型的输入变量... 为提高光伏功率的短期预测精度,提出一种变分模态分解(VMD)与麻雀搜索算法(SSA)优化混合核极限学习机(HKELM)相结合的短期光伏发电功率预测模型。运用皮尔逊相关系数(PCC)选取与光伏发电功率相关性较强的气象因素作为预测模型的输入变量;以平方欧氏距离作为衡量样本相似性的依据,筛选出不同天气类型下的最优训练样本。为降低数据的非平稳性,利用VMD将原始光伏功率数据分解为一系列不同带宽的模态分量,对各模态分量分别建立HKELM模型,通过引入SSA算法对HKELM模型进行参数寻优。将各模态分量的预测结果进行求和重构,得到光伏功率预测结果。仿真结果表明,相比于反向传播神经网络(BPNN)、极限学习机(ELM)、核极限学习机(VMDKELM)和混合核极限学习机(VMD-HKELM)模型,VMD-SSA-HKELM模型具有更高的预测精度,验证了本文模型的精确性和有效性。 展开更多
关键词 光伏功率预测 混合核极限学习机 变分模态分解 麻雀搜索算法
在线阅读 下载PDF
基于改进相关向量机的锂电池剩余使用寿命预测 被引量:7
14
作者 侯小康 袁裕鹏 童亮 《电源技术》 CAS 北大核心 2024年第2期289-298,共10页
精确预测锂离子电池剩余使用寿命对于保障设备安全运行十分重要。但电池寿命预测中存在诸如数据噪声和容量再生等不确定性来源,这将导致预测精度大幅下降。为解决这一问题,使用变分模态分解方法对从充电和容量数据中提取的健康因子进行... 精确预测锂离子电池剩余使用寿命对于保障设备安全运行十分重要。但电池寿命预测中存在诸如数据噪声和容量再生等不确定性来源,这将导致预测精度大幅下降。为解决这一问题,使用变分模态分解方法对从充电和容量数据中提取的健康因子进行滤波分解,并利用贝叶斯优化方法对相关参数进行优化,提出一种基于多核相关向量机的锂离子电池剩余使用寿命预测模型。利用美国国家航空航天局(NASA)和Oxford电池数据集对所提出的模型进行验证,研究结果表明:所提出的基于变分模态分解和贝叶斯优化的多核相关向量机(VMD-BAYES-HRVM)方法的预测性能不受预测起始点和截止电压的影响,预测结果准确性更高,95%置信区间的跨度更小,证明了所提出方法的有效性。 展开更多
关键词 锂离子电池 剩余使用寿命 变分模态分解 贝叶斯优化 多核相关向量机
在线阅读 下载PDF
基于数据驱动的离心泵轴承特征分析及寿命预测 被引量:4
15
作者 苏皓南 黄倩 +2 位作者 胡波 付强 朱荣生 《机电工程》 CAS 北大核心 2024年第6期941-955,共15页
离心泵是工业中能量转换和流体输送的核心设备,其部件滚动轴承的可靠性对整个机组的安全运行尤为关键。为了解决目前滚动轴承寿命预测问题,对滚动轴承剩余寿命的最佳预测方案进行了研究。首先,从数据驱动和试验出发,利用试验台采集所得... 离心泵是工业中能量转换和流体输送的核心设备,其部件滚动轴承的可靠性对整个机组的安全运行尤为关键。为了解决目前滚动轴承寿命预测问题,对滚动轴承剩余寿命的最佳预测方案进行了研究。首先,从数据驱动和试验出发,利用试验台采集所得的离心泵轴承正常及故障状态下的数据,分析了时域、频域、时频域各特征在不同工况中的表现差异,发现了时域特征、频域特征、小波包分解能量特征、完全自适应噪声完备集合经验模态分解(CEEMDAN)能量特征可以捕捉到不同工况下的故障信息;然后,以单调性、趋势性指标加权分数为依据,结合特征的敏感性分析结果,优选出了轴承在全寿命周期中表现突出的12个特征,经核主成分分析(KPCA)-长短期记忆网络(LSTM)降维处理后,构建出了能够表征离心泵轴承退化过程的一维特征量;最后,对比分析了LSTM网络、反向传播(BP)网络和卷积神经(CNN)网络的预测效果。研究结果表明:LSTM网络的均方根误差(RMSE)为0.402,平均绝对百分比误差(MAPE)为0.332,预测精度在三者中最好,模型平均训练时间为12.6 s,可见LSTM网络在预测精度及模型训练时间上更具优势。 展开更多
关键词 叶片式泵 滚动轴承 完全自适应噪声完备集合经验模态分解 核主成分分析 长短期记忆网络 轴承退化过程
在线阅读 下载PDF
基于自适应变分模态分解的齿轮箱故障诊断 被引量:1
16
作者 谢锋云 汪淦 +2 位作者 赏鉴栋 樊秋阳 朱海燕 《推进技术》 EI CAS CSCD 北大核心 2024年第9期218-227,共10页
针对航空齿轮箱故障诊断中采集到的振动信号包含复杂噪声干扰和冗余成分的问题,提出了基于自适应变分模态分解的齿轮箱故障诊断方法。利用综合评价指标完成变分模态分解(VMD)中分解层数K值的自适应选取,通过设置相关系数和能量熵的阈值... 针对航空齿轮箱故障诊断中采集到的振动信号包含复杂噪声干扰和冗余成分的问题,提出了基于自适应变分模态分解的齿轮箱故障诊断方法。利用综合评价指标完成变分模态分解(VMD)中分解层数K值的自适应选取,通过设置相关系数和能量熵的阈值,筛选同时大于阈值的分量作为包含主要能量且与原信号更加相似的分量进行重构,实现信号的降噪和特征增强。利用结合精细复合多尺度散布熵(RCMDE)对降噪后的信号进行特征提取,充分提取反映振动信号不同时间尺度复杂程度的非线性特征组成特征向量。使用粒子群算法(PSO)优化的核极限学习机(KELM)对所提取的特征进行识别。通过实验验证,该模型10次测试的平均准确率可达95.04%。与其他特征提取和模式识别方法进行对比,所提方法具有更高的诊断准确率,为航空齿轮箱的故障诊断提供了新的方法。 展开更多
关键词 航空齿轮箱 故障诊断 信号降噪 自适应变分模态分解 粒子群算法 核极限学习机
在线阅读 下载PDF
基于改进EMD-小波包的爆破振动信号降噪方法研究 被引量:10
17
作者 闫鹏 张云鹏 +2 位作者 侯善营 张为为 杨曦 《振动与冲击》 EI CSCD 北大核心 2024年第11期264-271,287,共9页
针对经验模态分解(empirical mode decomposition, EMD)存在模态混叠和降噪效果不佳的问题,依据分解—正交—聚类—降噪—重构的思想,提出了改进EMD-小波包的爆破振动信号降噪方法。该方法融合了核主成分分析的正交性、K-means算法的聚... 针对经验模态分解(empirical mode decomposition, EMD)存在模态混叠和降噪效果不佳的问题,依据分解—正交—聚类—降噪—重构的思想,提出了改进EMD-小波包的爆破振动信号降噪方法。该方法融合了核主成分分析的正交性、K-means算法的聚类特性以及小波包的降噪优势,不仅可以消除EMD的模态混叠,也具有良好的降噪效果。研究结果表明:与自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise analysis, CEEMDAN)和EMD方法相比,在模拟信号降噪试验中,改进EMD-小波包方法的信噪比(7.9 dB)最大,均方根误差(2.96)最小。在实测爆破振动信号降噪中,改进EMD-小波包方法降噪后的信号与原始信号相关系数最大为0.91。改进EMD-小波包和CEEMDAN方法的降噪效果相对理想,且改进EMD-小波包方法对10~60 Hz低频信号能量保存效果较好,对60 Hz以上中高频噪声的滤除效果最好。 展开更多
关键词 爆破振动信号 经验模态分解(EMD) 核主成分分析(KPCA) K-MEANS算法 小波包 降噪
在线阅读 下载PDF
基于OVMD-HWOA-KELM模型的变压器油中溶解气体体积分数预测方法 被引量:6
18
作者 谢明浩 张林鍹 +1 位作者 董小刚 许晋闻 《高电压技术》 EI CAS CSCD 北大核心 2024年第8期3793-3804,I0037,I0038,I0039,共15页
针对变压器油中溶解气体序列波动性、随机性较强难以精确预测的问题,提出一种基于最优变分模态分解(optimal variational mode decomposition,OVMD)、混合型鲸鱼优化算法(hybrid whale optimization algorithm,HWOA)和核极限学习机(kern... 针对变压器油中溶解气体序列波动性、随机性较强难以精确预测的问题,提出一种基于最优变分模态分解(optimal variational mode decomposition,OVMD)、混合型鲸鱼优化算法(hybrid whale optimization algorithm,HWOA)和核极限学习机(kernel extreme learning machine,KELM)的组合预测模型。首先,运用OVMD获取最优分解参数,并将原始序列分解为一系列相对平稳的分量;其次,通过在鲸鱼种群中融入混沌映射、非线性收敛参数、自适应权重因子和改进的算术优化算法提出HWOA算法,并利用测试函数验证HWOA算法的优越性;然后,对各分量分别构建KELM预测模型,使用HWOA优化KELM的关键参数。最后,将各分量的预测结果叠加重构,得到最终预测结果。案例分析表明,所提模型对变压器正常和异常案例预测的决定系数分别可达97.7%和93.46%,相较于现存方法,该模型具有更好的准确性和适应性,可为电力变压器运维管理提供有利技术支撑。 展开更多
关键词 油中溶解气体 最优变分模态分解 融合型鲸鱼优化算法 核极限学习机 变压器状态预测
在线阅读 下载PDF
基于相似日聚类和PCC-VMD-SSA-KELM模型的短期光伏功率预测 被引量:14
19
作者 李争 张杰 +3 位作者 徐若思 罗晓瑞 梅春晓 孙鹤旭 《太阳能学报》 EI CAS CSCD 北大核心 2024年第2期460-468,共9页
由于光伏发电的随机性和不稳定性会影响功率预测的精度,提出一种基于皮尔逊相关系数(PCC)、K-均值算法(K-means)、变分模态分解(VMD)、麻雀搜索算法(SSA)、核函数极限学习机(KELM)的光伏功率短期预测模型。首先,用PCC选取主要因素作为输... 由于光伏发电的随机性和不稳定性会影响功率预测的精度,提出一种基于皮尔逊相关系数(PCC)、K-均值算法(K-means)、变分模态分解(VMD)、麻雀搜索算法(SSA)、核函数极限学习机(KELM)的光伏功率短期预测模型。首先,用PCC选取主要因素作为输入;K-均值算法进行相似日聚类,将历史数据聚类为晴天、多云和雨天;其次,VMD对原始信号进行分解,充分提取集合中的输入因素信息,提高数据质量;SSA优化KELM模型的核函数参数和正则化系数解决其参数选择敏感问题;最后,将不同序列预测值叠加得到最终预测结果。仿真结果表明,所提相似日聚类下PCC-VMD-SSA-KELM模型具有较小的预测误差。 展开更多
关键词 光伏发电 功率预测 变分模态分解 K-均值 麻雀算法 核函数极限学习机
在线阅读 下载PDF
基于集合经验模态分解的增强核岭回归配电系统状态估计 被引量:1
20
作者 张玉敏 张涌琛 +4 位作者 叶平峰 吉兴全 石春友 蔡富东 李一宸 《中国电力》 CSCD 北大核心 2024年第9期156-168,共13页
针对配电网量测信息存在强非高斯噪声时会大幅干扰基于深度学习的状态估计模型滤波精度的问题,提出了一种基于集合经验模态分解的增强核岭回归状态估计方法。首先,使用集合经验模态分解筛除量测信息中的多数噪声数据,保障了后续滤波对... 针对配电网量测信息存在强非高斯噪声时会大幅干扰基于深度学习的状态估计模型滤波精度的问题,提出了一种基于集合经验模态分解的增强核岭回归状态估计方法。首先,使用集合经验模态分解筛除量测信息中的多数噪声数据,保障了后续滤波对数据可靠性的要求。然后,通过构建增强核岭回归状态估计模型,建立了量测信息与估计残差之间的映射关系,输入量测信息后可以得到估计结果与估计残差。最后,在标准IEEE 33节点与某市78节点系统上进行数值仿真,结果证明了该方法在强非高斯噪声干扰下具有较高的精确性和鲁棒性。 展开更多
关键词 配电系统 状态估计 核岭回归 非高斯噪声 集合经验模态分解
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部