期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
基于SMOTE-IKPCA-SeNet深度迁移学习的小批量生产质量预测研究 被引量:1
1
作者 杨剑锋 崔少红 +1 位作者 段家琦 王宁 《工业工程》 2024年第2期98-106,157,共10页
随着智能制造技术的发展和客户个性化需求的增加,多品种小批量生产方式逐渐成为制造业的主流。面向大批量生产、以统计过程控制为核心的质量管理方式并不适用于小批量生产。针对复杂生产过程存在参数多、非线性和交互作用的问题,提出利... 随着智能制造技术的发展和客户个性化需求的增加,多品种小批量生产方式逐渐成为制造业的主流。面向大批量生产、以统计过程控制为核心的质量管理方式并不适用于小批量生产。针对复杂生产过程存在参数多、非线性和交互作用的问题,提出利用深度迁移学习的方式将历史生产数据作为源域迁移至小样本目标产品数据进行质量预测。首先,通过合成少数类过采样技术(synthetic minority over-sampling technique,SMOTE)和改进的核主成分分析(improved kernel principal component analysis,IKPCA)算法筛选源域和目标域的可迁移特征,这不仅兼顾了特征重要性和可迁移性,还减少了“负迁移”,提高了模型泛化能力;然后,采用结合通道注意力机制的卷积神经网络SeNet构建基于深度迁移学习的质量预测模型。仿真结果表明,随着目标域样本的增加,所提方法的预测准确性明显优于广泛采用的支持向量机建模方法。同时,所提可迁移特征筛选方法显著提高了深度迁移学习的质量预测效果,为复杂的小批量生产过程质量保证提供了新方法。 展开更多
关键词 小批量生产质量预测 深度迁移学习 SMOTE Ikpca SeNet
在线阅读 下载PDF
基于OVMD-KPCA-RTH-GRU的短期光伏发电功率预测 被引量:2
2
作者 王红徐 严新军 +2 位作者 夏庆成 刘佳琪 王雪虎 《水力发电》 CAS 2024年第9期98-103,共6页
针对光伏发电功率的随机性、波动性和非线性问题,提出了一种结合经红尾鵟(RTH)算法优化的变分模态分解(VMD)、核主成分分析(KPCA)和经RTH算法优化的门控循环单元(GRU)神经网络的光伏发电功率预测模型。首先,使用RTH算法对VMD和GRU神经... 针对光伏发电功率的随机性、波动性和非线性问题,提出了一种结合经红尾鵟(RTH)算法优化的变分模态分解(VMD)、核主成分分析(KPCA)和经RTH算法优化的门控循环单元(GRU)神经网络的光伏发电功率预测模型。首先,使用RTH算法对VMD和GRU神经网络的5个超参数进行优化;接着,应用优化后的VMD方法分解原始数据,以减少光伏数据的波动性和随机性;然后,采用KPCA方法降低数据维度,消除冗余;最后,利用经RTH优化的GRU神经网络模型进行时序建模。通过分析新疆某光伏电站的历史发电数据,并与GRNN、LSTM、GRU以及OVMD-GRU、OVMD-KPCA-GRU模型相比较,本模型的拟合优度高达98.96%,显示出更高的预测精度。 展开更多
关键词 变分模态分解 核主成分分析 红尾鵟优化算法 门控循环神经网络 光伏功率预测
在线阅读 下载PDF
基于肌音信号的KPCAGASVM步态模式识别
3
作者 吴碧霞 管小荣 +1 位作者 李仲 史亦凡 《信息技术》 2024年第5期52-59,65,共9页
外骨骼机器人发展迅速,基于生理信号的运动意图识别在人机协同控制研究中得以重视。针对肌电信号易受肌肉疲劳影响和采集要求高的缺点,提出一种基于肌音信号的核主成分分析和改进支持向量机(KPCAGASVM)的模式识别方案,对平地行走、上楼... 外骨骼机器人发展迅速,基于生理信号的运动意图识别在人机协同控制研究中得以重视。针对肌电信号易受肌肉疲劳影响和采集要求高的缺点,提出一种基于肌音信号的核主成分分析和改进支持向量机(KPCAGASVM)的模式识别方案,对平地行走、上楼下楼和上坡下坡5种步态进行模式识别研究。基于遗传算法进行参数调优,其识别方案KPCAGASVM的识别准确率为97.33%,优于PCAGASVM和其他分类器。实验验证,基于肌音信号的KPCAGASVM为一种高效的步态运动识别方案。 展开更多
关键词 外骨骼 肌音信号 遗传算法 支持向量机 核主成分分析
在线阅读 下载PDF
基于KPCA降维分析的特高拱坝监测模型 被引量:1
4
作者 王子轩 陈德辉 +2 位作者 欧斌 杨石勇 傅蜀燕 《人民长江》 北大核心 2024年第10期246-254,共9页
为提高大坝变形预测精度,针对变形数据影响因子间的多重共线性问题,构建了基于核主成分分析(KPCA)、全局搜索策略的鲸鱼优化算法(GSWOA)和门控循环单元(GRU)的组合预测模型。首先利用KPCA对高维变形序列进行降维处理,同时使用GSWOA对GR... 为提高大坝变形预测精度,针对变形数据影响因子间的多重共线性问题,构建了基于核主成分分析(KPCA)、全局搜索策略的鲸鱼优化算法(GSWOA)和门控循环单元(GRU)的组合预测模型。首先利用KPCA对高维变形序列进行降维处理,同时使用GSWOA对GRU参数进行优化,进而构建出最优变形预测模型。以小湾特高拱坝变形数据为例,将KPCA-GSWOA-GRU模型与KPCA-WOA-GRU模型、PCA-GSWOA-GRU模型以及传统模型进行预测拟合对比。结果表明:KPCA-GSWOA-GRU模型有效降低了多重共线性问题,且在均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和决定系数(R^(2))等方面均优于对比模型。 展开更多
关键词 特高拱坝 变形监测 降维分析 核主成分分析(kpca) 全局搜索策略的鲸鱼优化算法(GSWOA) 门控循环单元(GRU) 小湾水电站
在线阅读 下载PDF
基于KPCA和数据处理组合方法神经网络的半球谐振陀螺温度建模补偿方法
5
作者 张晨 汪立新 孔祥玉 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第7期1336-1345,共10页
针对半球谐振陀螺(HRG)的温度建模与补偿问题,提出基于核主成分分析(KPCA)和数据处理组合方法(GMDH)神经网络的建模补偿方法.通过分析HRG的温度特性和大数据特征,初步确定网络模型的特征向量.为了去除HRG输出数据的相关性和冗余性,引入K... 针对半球谐振陀螺(HRG)的温度建模与补偿问题,提出基于核主成分分析(KPCA)和数据处理组合方法(GMDH)神经网络的建模补偿方法.通过分析HRG的温度特性和大数据特征,初步确定网络模型的特征向量.为了去除HRG输出数据的相关性和冗余性,引入KPCA并降低特征向量维度.将特征向量代入GMDH神经网络训练,区分训练集和验证集以确定网络权值和网络结构,实现HRG温度漂移的建模与补偿.实验结果表明,单一样本预测时,所提方法预测效果明显好于传统多项式模型;多样本预测时,在4种不同训练样本下,所提方法相比传统多项式模型精度分别提升了48.5%、54.0%、56.3%、68.4%,相比GMDH模型分别提升了3.6%、5.1%、3.8%、8.8%.所提方法能够有效提高HRG在变温工况下的测量精度. 展开更多
关键词 半球谐振陀螺(HRG) 核主成分分析(kpca) 数据处理组合方法(GMDH) 温度建模与补偿 测量精度
在线阅读 下载PDF
非盲源KPCA剩余噪声比阈值层析SAR成像方法
6
作者 刘慧 程碧辉 +2 位作者 庞蕾 郭子夜 王潜 《现代雷达》 CSCD 北大核心 2024年第5期13-18,共6页
合成孔径雷达(SAR)层析成像技术是基于干涉SAR测量技术发展而来的先进三维成像技术。层析SAR通过第三维反演技术将叠掩在同一距离-方位分辨单元的散射体进行分离而实现SAR的三维成像。因此,叠掩在同一距离-方位分辨单元的散射体分离是... 合成孔径雷达(SAR)层析成像技术是基于干涉SAR测量技术发展而来的先进三维成像技术。层析SAR通过第三维反演技术将叠掩在同一距离-方位分辨单元的散射体进行分离而实现SAR的三维成像。因此,叠掩在同一距离-方位分辨单元的散射体分离是层析成像的关键。文中提出了一种非盲源散射体分离算法,结合核主成分分析和剩余噪声比阈值,估计同一距离-方位分辨单元内散射体的个数,并反演其位置。在满足完整度的同时,尽可能抑制噪声。该方法利用核主成分分析,人为增加核矩阵维度,从而减少系统的导向向量偏差;并且加入剩余成分中噪声强度比的计算作为算法的约束条件,从而降低了噪声信号误判的可能性。实验结果表明,所提方法在各个方面都优于传统的层析反演方法,并且高度重建精度得到一定程度的提高。 展开更多
关键词 非线性散射体分离 层析合成孔径雷达 核主成分分析 合成孔径雷达三维成像
在线阅读 下载PDF
基于改进KPCA算法的车牌字符识别方法 被引量:7
7
作者 吴成东 樊玉泉 +1 位作者 张云洲 刘濛 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第5期629-632,共4页
针对核主元分析(KPCA)用于提取车牌字符特征不足的情况,提出了一种采用多组均值矢量来代替原始图像矢量进行核矩阵计算的方法,该方法使得核矩阵维数大幅降低,同时有效地保留了字符图像信息.实验结果表明,该方法在不降低识别精度的基础... 针对核主元分析(KPCA)用于提取车牌字符特征不足的情况,提出了一种采用多组均值矢量来代替原始图像矢量进行核矩阵计算的方法,该方法使得核矩阵维数大幅降低,同时有效地保留了字符图像信息.实验结果表明,该方法在不降低识别精度的基础上对输入数据实现了有效的降维,大大缩短了计算时间,有效地满足了车牌实时识别系统技术要求.通过实验对比可知,该方法比目前常用的PCA及FLD算法具有更高的性能指标. 展开更多
关键词 核主元分析(kpca) 字符识别 图像 降维 车牌
在线阅读 下载PDF
基于局域波法和KPCA-LSSVM的滚动轴承故障诊断 被引量:14
8
作者 杨先勇 周晓军 +1 位作者 张文斌 杨富春 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第8期1519-1524,共6页
针对故障滚动轴承振动信号具有非平稳性,提出基于局域波法和核主元分析-最小二乘支持向量机(KPCA-LSSVM)的故障诊断方法.先对轴承振动信号进行局域波分解得到若干内禀模式函数(IMF),分别计算各IMF分量的特征能量、奇异值和AR模型参数作... 针对故障滚动轴承振动信号具有非平稳性,提出基于局域波法和核主元分析-最小二乘支持向量机(KPCA-LSSVM)的故障诊断方法.先对轴承振动信号进行局域波分解得到若干内禀模式函数(IMF),分别计算各IMF分量的特征能量、奇异值和AR模型参数作为原始特征向量,再用KPCA将原始特征向量映射到高维特征空间提取主元构造新的特征向量,将其作为LSSVM分类器的输入来实现轴承的故障诊断.故障诊断试验结果表明,KPCA-LSSVM诊断方法通过KPCA得到更多的识别信息,改善了LSSVM的分类性能,相对于直接LSSVM诊断方法具有更优的泛化性,可准确识别轴承的故障类别和严重程度. 展开更多
关键词 滚动轴承 故障诊断 局域波法 核主元分析 最小二乘支持向量机
在线阅读 下载PDF
基于PCA和KPCA特征抽取的SVM网络入侵检测方法 被引量:20
9
作者 高海华 杨辉华 王行愚 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第3期321-326,共6页
提出一种新颖的基于特征抽取的异常检测方法,应用主分量分析(PCA)和核主分量分析(KPCA)抽取入侵特征,再应用支持向量机(SVM)检测入侵。其中PCA对输入特征做线性变换,而KPCA通过核函数进行非线性变换。利用KDD 99数据集,将PCA-SVM、KPCA-... 提出一种新颖的基于特征抽取的异常检测方法,应用主分量分析(PCA)和核主分量分析(KPCA)抽取入侵特征,再应用支持向量机(SVM)检测入侵。其中PCA对输入特征做线性变换,而KPCA通过核函数进行非线性变换。利用KDD 99数据集,将PCA-SVM、KPCA-SVM与SVM、PCR、KPCR进行比较,结果显示:在不降低分类器性能的情况下,特征抽取方法能对输入数据有效降维。在各种方法中,KPCA与SVM的结合能得到最优入侵检测性能。 展开更多
关键词 异常检测 特征抽取 主分量分析(PCA) 核主分量分析(kpca) 支持向量机 (SVM)
在线阅读 下载PDF
基于KPCA和改进K-means的电力负荷曲线聚类方法 被引量:24
10
作者 梁京章 黄星舒 +1 位作者 吴丽娟 熊小萍 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第6期143-150,共8页
为了提高电力负荷曲线聚类精度,文中提出了一种基于核主成分分析(KPCA)和改进K-means算法的电力负荷曲线聚类方法。该方法首先在划分聚类算法K-means基础上融入密度聚类思想,提出了融合密度思想的K-means算法(DK-means算法),并在电力负... 为了提高电力负荷曲线聚类精度,文中提出了一种基于核主成分分析(KPCA)和改进K-means算法的电力负荷曲线聚类方法。该方法首先在划分聚类算法K-means基础上融入密度聚类思想,提出了融合密度思想的K-means算法(DK-means算法),并在电力负荷曲线实验集上对比分析其聚类效果;接着在实验集上比较各种降维算法的降维聚类精度和降维速度;最后分析KPCA+DK-means组合算法的降维聚类能力。结果表明,戴维森堡丁指数(DBI)更适合作为电力负荷曲线聚类评价指标;以DBI为评价指标,与K-means、BIRCH、DBSCAN和EnsClust 4种聚类算法相比,DK-means的聚类精度更高;与LLE、MDS、ISOMAP 3种非线性降维算法相比,KPCA的降维速度更快;KPCA+DK-means组合算法有良好的降维聚类能力,较DK-means在聚类精度和聚类效率上均有提升。KPCA+DK-means组合算法可以实现电力负荷曲线的高效降维、精确聚类,对用电行为模式的准确提取起关键技术支持作用。 展开更多
关键词 电力负荷曲线 DK-means算法 核主成分分析 降维 聚类
在线阅读 下载PDF
改进的基于数据重构的KPCA故障识别方法 被引量:4
11
作者 王姝 冯淑敏 +1 位作者 常玉清 王福利 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第4期500-503,共4页
核主元分析(KPCA)方法相对于主元分析(PCA)方法在非线性过程监测方面具有一定的优势,但是KPCA很难找到由特征空间到原始空间的逆映射函数,这给基于KPCA的故障诊断带来了很大的障碍.为此,在KPCA故障数据重构方法的基础上,对故障识别指标... 核主元分析(KPCA)方法相对于主元分析(PCA)方法在非线性过程监测方面具有一定的优势,但是KPCA很难找到由特征空间到原始空间的逆映射函数,这给基于KPCA的故障诊断带来了很大的障碍.为此,在KPCA故障数据重构方法的基础上,对故障识别指标进行改进.改进后的方法既能够识别单变量引起的故障,又能识别多变量引起的故障,而且减少了指标计算过程中的运算量,避免了传统故障识别方法只能实现单变量故障追溯的缺陷.将提出的故障识别方法在田纳西过程中进行了仿真研究,结果表明所提方法的有效性. 展开更多
关键词 数据重构 kpca 故障识别 非线性 田纳西过程
在线阅读 下载PDF
KPCA-GRNN网络在数控机床复合故障诊断中的应用 被引量:6
12
作者 李善 谭继文 +1 位作者 俞昆 文妍 《煤矿机械》 2016年第3期152-154,共3页
提出了一种将核主元分析法(KPCA)与GRNN网络相结合的数控机床复合故障诊断方法。原始复合信号经过EMD分解,将得到的IMF与其他时频域特征值组成原始信号特征集;运用KPCA方法对原始特征集进行降维处理,构造核主元特征集;将筛选后的特征向... 提出了一种将核主元分析法(KPCA)与GRNN网络相结合的数控机床复合故障诊断方法。原始复合信号经过EMD分解,将得到的IMF与其他时频域特征值组成原始信号特征集;运用KPCA方法对原始特征集进行降维处理,构造核主元特征集;将筛选后的特征向量作为GRNN网络的输入,实现了数控机床不同复合故障的模式识别,并与其他3种网络对比,验证了该方法的优越性。 展开更多
关键词 核主元分析法(kpca) GRNN神经网络 复合故障 故障诊断
在线阅读 下载PDF
基于KPCA与KFDA的SAR图像舰船目标识别 被引量:5
13
作者 刘磊 孟祥伟 于柯远 《舰船科学技术》 北大核心 2017年第7期149-152,共4页
针对SAR图像中舰船目标识别的问题,提出了基于核主成分分析(Kernel Principal Component Analysis,KPCA)和核Fisher判别分析(Kernel Fisher Discriminate Analysis,KFDA)相结合的舰船目标识别算法。用核主成分分析的方法对实测的SAR舰... 针对SAR图像中舰船目标识别的问题,提出了基于核主成分分析(Kernel Principal Component Analysis,KPCA)和核Fisher判别分析(Kernel Fisher Discriminate Analysis,KFDA)相结合的舰船目标识别算法。用核主成分分析的方法对实测的SAR舰船目标数据进行特征降维,再结合核Fisher判别分析法对降维后的样本数据进行多类别分类。将该方法用于对实测的四类舰船目标进行识别,平均识别率可达91.25%。实验结果表明,核主成分分析与核Fisher判别分析相结合的方法可提取目标的有效特征,在较低特征维数情况下获得较高的目标正确识别率。 展开更多
关键词 SAR图像 目标识别 特征提取 核主成分分析 核FISHER判别分析
在线阅读 下载PDF
基于KPCA-LSTM的旋转机械剩余使用寿命预测 被引量:4
14
作者 曹现刚 叶煜 +2 位作者 赵友军 段雍 杨鑫 《振动与冲击》 EI CSCD 北大核心 2023年第24期81-91,共11页
旋转机械的剩余使用寿命(remaining useful life, RUL)预测对工业设备预测和健康管理的具有重要意义。该文针对多传感器冗余数据导致旋转机械退化信息提取困难、剩余使用寿命预测效果差的问题,提出了一种基于核主成分分析-长短期记忆网... 旋转机械的剩余使用寿命(remaining useful life, RUL)预测对工业设备预测和健康管理的具有重要意义。该文针对多传感器冗余数据导致旋转机械退化信息提取困难、剩余使用寿命预测效果差的问题,提出了一种基于核主成分分析-长短期记忆网络(kernel principal component analysis-long short term memory, KPCA-LSTM)的方法对旋转机械剩余使用寿命预测。首先,分析旋转机械的多维退化数据,选择可以表征旋转机械退化的数据;其次,对退化数据进行(kernel principal component analysis, KPCA)融合及特征提取,将降维融合的特征作为预测模型的输入;然后构建旋转机械的健康指标,并通过多阶微分划分旋转机械的不同健康状态,建立KPCA-LSTM模型对旋转机械的剩余使用寿命进行预测;最后,在实验室搭建的矿用减速器平台上进行了试验验证。试验结果表明:该文所提方法与LSTM、粒子群优化LSTM的方法比较,该方法预测效果优于其他两种模型,并降低模型训练的复杂性,减少预测用时。 展开更多
关键词 旋转机械 核主成分分析(kpca) 贝叶斯参数优化 长短期记忆网络(LSTM) 剩余使用寿命(RUL)预测
在线阅读 下载PDF
基于Volterra级数和KPCA的旋转机械故障诊断方法研究 被引量:2
15
作者 蒋静 李志农 易小兵 《噪声与振动控制》 CSCD 北大核心 2011年第1期119-122,共4页
提出一种基于Volterra级数和核函数主元分析(KPCA)的故障诊断方法。在提出的方法中,首先利用量子粒子群(QPSO)算法辨识出正常、转子裂纹、转子碰摩、基座松动四种状态下的Volterra级数,然后将Volterra级数作为特征向量输入到KPCA进行训... 提出一种基于Volterra级数和核函数主元分析(KPCA)的故障诊断方法。在提出的方法中,首先利用量子粒子群(QPSO)算法辨识出正常、转子裂纹、转子碰摩、基座松动四种状态下的Volterra级数,然后将Volterra级数作为特征向量输入到KPCA进行训练识别。实验结果表明,提出的方法是有效的,在只考虑一阶Volterra核的情况下不能进行很好地进行识别时,可以从二阶、三阶Volterra核上来区分。 展开更多
关键词 振动与波 VOLTERRA级数 量子粒子群(QPSO) 核函数主元分析(kpca) 故障诊断
在线阅读 下载PDF
基于KPCA和PSO-SVM的木材干燥过程在线优化建模研究 被引量:1
16
作者 张冬妍 张春妍 尹文芳 《安徽农业科学》 CAS 2014年第7期1993-1996,共4页
针对木材干燥过程样本数据存在较多噪声的问题,采用核主成分分析方法对木材干燥数据进行预处理,然后利用粒子群优化的支持向量机建立木材干燥系统的在线预测模型,并进行在线预测。仿真研究表明,对数据预处理后,降维训练样本建立的木材... 针对木材干燥过程样本数据存在较多噪声的问题,采用核主成分分析方法对木材干燥数据进行预处理,然后利用粒子群优化的支持向量机建立木材干燥系统的在线预测模型,并进行在线预测。仿真研究表明,对数据预处理后,降维训练样本建立的木材干燥模型能够获得很好的预测精度,计算量小,速度快。在线模型能够实时反映系统当前状态,在线优化模型结构并预测系统下一步输出,实现了木材含水率特性变化的动态预测。模型输出误差小、泛化能力强,能够满足实际干燥过程在线预测控制的需要,具有良好的实际应用价值和工业前景。 展开更多
关键词 木材干燥 核主成分分析 粒子群优化支持向量机 在线建模
在线阅读 下载PDF
基于KPCA信息融合与随机森林的中介轴承故障诊断方法 被引量:2
17
作者 艾延廷 孙志航 +2 位作者 田晶 许鹭 王志 《沈阳航空航天大学学报》 2019年第5期1-9,共9页
针对航空发动机中介轴承故障信号传递结构复杂且路径长、信噪比低的问题,提出了一种基于核主元分析(KPCA)与随机森林(Random Forest)相结合的故障诊断新方法,利用EEMD处理非线性信号的优势进行信号分析。首先,将采集的声发射信号分解成... 针对航空发动机中介轴承故障信号传递结构复杂且路径长、信噪比低的问题,提出了一种基于核主元分析(KPCA)与随机森林(Random Forest)相结合的故障诊断新方法,利用EEMD处理非线性信号的优势进行信号分析。首先,将采集的声发射信号分解成多个IMF分量,为兼顾时域和频域信息,提取各个IMF分量的样本熵(SampEn)和奇异熵(SingEn)作为各层信号的时频特征。利用KPCA将各分量的样本熵和奇异熵融合,并降低维度得到体现时频信息的数据样本,最后训练出以随机森林为模型的多类分类器。研究表明,基于KPCA信息融合与随机森林的中介轴承故障方法有效,故障识别准确率可达95%以上。 展开更多
关键词 核主元分析 随机森林 中介轴承 信息融合 声发射信号 故障诊断
在线阅读 下载PDF
基于KPCA的多频极化SAR图像信息压缩和噪声抑制
18
作者 李映 雷晓刚 +1 位作者 白本督 张艳宁 《西北工业大学学报》 EI CAS CSCD 北大核心 2007年第5期708-711,共4页
多频极化SAR图像不同的波段和极化方向上存在着冗余信息和相干斑噪声。为此,提出了一种基于核主分量分析(KPCA)的多频率多极化SAR图像信息压缩和抑噪方法。KPCA通过利用"核技巧",对线性PCA进行了非线性的推广。对NASA/JPL 3... 多频极化SAR图像不同的波段和极化方向上存在着冗余信息和相干斑噪声。为此,提出了一种基于核主分量分析(KPCA)的多频率多极化SAR图像信息压缩和抑噪方法。KPCA通过利用"核技巧",对线性PCA进行了非线性的推广。对NASA/JPL 3个波段的多极化SAR图像实验结果表明,相对于线性PCA,KPCA具有更好的信息提取、压缩和噪声抑制作用。 展开更多
关键词 核主分量分析 多频极化SAR图像 信息压缩 抑噪
在线阅读 下载PDF
基于双视角协同聚类和特征谱的雷达辐射源分类
19
作者 吴小丹 黄朝围 +2 位作者 王剑 狄慧 谷晓鹰 《上海航天(中英文)》 2025年第1期186-196,共11页
针对现代认知电子侦察方法中雷达系统部署多个信号源和雷达对抗措施而产生的复杂电磁环境,严重限制了获取有效目标识别所需的先验信息程度问题。本文提出了一种基于雷达信号的双视角协同聚类方法对辐射源进行分类,特别应用于双视角的场... 针对现代认知电子侦察方法中雷达系统部署多个信号源和雷达对抗措施而产生的复杂电磁环境,严重限制了获取有效目标识别所需的先验信息程度问题。本文提出了一种基于雷达信号的双视角协同聚类方法对辐射源进行分类,特别应用于双视角的场景下。所提方法也是从双视角的场景下,让两个信号视角获得的聚类结果之间差异,通过线性判别分析迭代地执行无监督聚类、聚类标签转移和降维,使得辐射信号排序可以在非协同环境中进行。实验验证:所提方法可以充分利用基本信号特征与脉内特征之间的差异信息,提高基于聚类的辐射源分选的精度。因此,所提方法的排序能力具有较高的实际价值。 展开更多
关键词 雷达特征谱 双视角协调聚类 雷达信号 双光谱特性 核主成分分析(kpca)
在线阅读 下载PDF
基于KPCA-BP网络模型的滚动轴承故障诊断方法研究 被引量:8
20
作者 徐卫晓 宋平 谭继文 《煤矿机械》 北大核心 2014年第8期265-267,共3页
针对滚动轴承信号的非线性、非平稳性特点及诊断中冗余与噪音的干扰,引入了核主元分析法和BP神经网络相结合的方法对轴承的故障信号进行诊断,以提高轴承故障诊断的性能。通过5个传感器采集轴承不同状态的故障信号,利用小波包提取能量特... 针对滚动轴承信号的非线性、非平稳性特点及诊断中冗余与噪音的干扰,引入了核主元分析法和BP神经网络相结合的方法对轴承的故障信号进行诊断,以提高轴承故障诊断的性能。通过5个传感器采集轴承不同状态的故障信号,利用小波包提取能量特征值,同时提取轴承的时-频域特征量组成原始特征空间,利用核主元分析方法对原始特征空间降维,提取主元特征量输入到BP神经网络中进行故障模式识别。试验结果表明,KPCA-BP网络模型的性能优于未筛选-BP网络,具有更好的诊断效果和抗干扰能力。 展开更多
关键词 核主元分析 BP神经网络 滚动轴承 故障诊断
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部