期刊文献+
共找到216篇文章
< 1 2 11 >
每页显示 20 50 100
Kernel method-based fuzzy clustering algorithm 被引量:2
1
作者 WuZhongdong GaoXinbo +1 位作者 XieWeixin YuJianping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期160-166,共7页
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d... The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis. 展开更多
关键词 fuzzy clustering analysis kernel method fuzzy C-means clustering.
在线阅读 下载PDF
粒子群优化的KFCM及SVM诊断模型在断路器故障诊断中的应用 被引量:71
2
作者 梅飞 梅军 +2 位作者 郑建勇 张思宇 朱克东 《中国电机工程学报》 EI CSCD 北大核心 2013年第36期134-141,19,共8页
为了利用相对较少的故障数据样本对断路器主要故障类型进行较为准确的在线判断,提出了一种基于融合粒子群的模糊核聚类(particle swarm fused kernel fuzzy C-means,P-KFCM)与支持向量机(support vector machine,SVM)的故障诊断方法。... 为了利用相对较少的故障数据样本对断路器主要故障类型进行较为准确的在线判断,提出了一种基于融合粒子群的模糊核聚类(particle swarm fused kernel fuzzy C-means,P-KFCM)与支持向量机(support vector machine,SVM)的故障诊断方法。通过对断路器分合闸电流信号的分析,找出与断路器主要故障类型相对应的特征量;据此对采样信号进行处理,建立故障特征样本空间;利用P-KFCM算法对故障训练样本进行预分类,并以此为基础建立多SVM故障预测模型。P-KFCM算法将粒子群(particle swarm optimization,PSO)的全局搜索能力融入KFCM中,有效的解决了局部最优问题,在一定程度上提升了诊断结果的可靠性。实验结果表明,该方法在诊断断路器主要机械故障方面能够取得较好的效果。 展开更多
关键词 模糊核聚类 粒子群 支持向量机 断路器 故障诊断
在线阅读 下载PDF
基于VMD与KFCM的柴油机故障诊断算法 被引量:19
3
作者 毕凤荣 汤代杰 +3 位作者 张立鹏 李鑫 马腾 杨晓 《振动.测试与诊断》 EI CSCD 北大核心 2020年第5期853-858,1018,1019,共8页
针对柴油机的故障诊断问题,提出了一种基于变分模态分解(variational mode decomposition,简称VMD)与核模糊C均值聚类算法(kernel fuzzy C-means clustering,简称KFCM)联合的故障诊断方法。首先,针对VMD算法中分解层数K的选择问题进行... 针对柴油机的故障诊断问题,提出了一种基于变分模态分解(variational mode decomposition,简称VMD)与核模糊C均值聚类算法(kernel fuzzy C-means clustering,简称KFCM)联合的故障诊断方法。首先,针对VMD算法中分解层数K的选择问题进行了自适应优化;然后,从优化VMD算法的分解结果中选取3个关键分量计算最大奇异值,并将其作为3维的特征向量输入KFCM算法中进行分类识别;最后,对仿真信号以及某型柴油机的模拟故障实验信号使用优化VMD、传统VMD和经验模态分解(empirical mode decomposition,简称EMD)方法分别进行分解与识别。结果表明,笔者提出的方法明显改善了模态混叠现象,提高了模式识别的诊断正确率,提出的联合算法具有更好的应用前景。 展开更多
关键词 柴油机 振动信号 故障诊断 变分模态分解 核模糊C均值聚类算法
在线阅读 下载PDF
基于KFCM和改进CV模型的海面溢油SAR图像分割 被引量:15
4
作者 吴一全 郝亚冰 +2 位作者 吴诗婳 张宇飞 谢乾坤 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第12期2812-2818,共7页
图像分割是合成孔径雷达(synthetic aperture radar,SAR)图像海面溢油检测的关键步骤之一,将核模糊C均值(kernel fuzzy C-means,KFCM)聚类方法及Chan-Vese(CV)模型应用于海面溢油SAR图像分割,为了解决单一KFCM方法分割精度不够高,及传... 图像分割是合成孔径雷达(synthetic aperture radar,SAR)图像海面溢油检测的关键步骤之一,将核模糊C均值(kernel fuzzy C-means,KFCM)聚类方法及Chan-Vese(CV)模型应用于海面溢油SAR图像分割,为了解决单一KFCM方法分割精度不够高,及传统CV模型对初始条件敏感和收敛速度低的问题,提出了一种基于KFCM和改进CV模型的海面溢油SAR图像分割方法。首先利用KFCM算法将海面溢油SAR图像从原始样本空间映射到高维特征空间,得到聚类结果;然后将其作为CV模型的初始条件,以降低CV模型对初始条件的敏感性,并利用图像边缘强度取代传统CV模型中的Dirac函数,以提高模型的收敛速度和对不同SAR图像的适应性。大量实验结果表明,所提出的基于KFCM和改进CV模型的海面溢油SAR图像分割方法具有分割精度高、运算速度快的优点。 展开更多
关键词 海面溢油检测 SAR图像 图像分割 核模糊C均值聚类 Chan—Vese模型
在线阅读 下载PDF
基于EEMD形态谱和KFCM聚类集成的滚动轴承故障诊断方法研究 被引量:27
5
作者 郑直 姜万录 +2 位作者 胡浩松 朱勇 李扬 《振动工程学报》 EI CSCD 北大核心 2015年第2期324-330,共7页
针对滚动轴承的故障诊断问题,提出了一种基于集总经验模态分解(EEMD)、形态谱特征提取和核模糊C均值聚类(KFCMC)集成的故障诊断新方法。首先,对实测的滚动轴承振动信号进行EEMD分解,得到若干个代表不同振动模态的内禀模态函数(IMF);其次... 针对滚动轴承的故障诊断问题,提出了一种基于集总经验模态分解(EEMD)、形态谱特征提取和核模糊C均值聚类(KFCMC)集成的故障诊断新方法。首先,对实测的滚动轴承振动信号进行EEMD分解,得到若干个代表不同振动模态的内禀模态函数(IMF);其次,基于峭度、能量和均方差三个评价指标,从分解得到的若干个IMF分量中选出含有故障特征信息最丰富的3个IMF分量作为诊断用的数据源;然后在选定尺度范围内提取每个IMF分量的形态谱平均值,将三个形态谱平均值构成一个三维特征向量,作为一个样本,形成样本集;最后,利用KFCMC完成对滚动轴承不同故障的分类识别。此外,为了对比说明该方法的识别效果,还将振动信号用经验模态分解(EMD)方法进行分解,用模糊C均值聚类(FCMC)进行分类识别,结果表明所提方法的识别效果要优于EMD形态谱和FCMC相结合的方法。通过对实测的滚动轴承振动信号的实验验证,表明该方法可以实现对滚动轴承故障的有效诊断。 展开更多
关键词 故障诊断 滚动轴承 集总经验模态分解 形态谱 核模糊 C 均值聚类
在线阅读 下载PDF
基于粒子群优化KFCM的风电齿轮箱故障诊断 被引量:20
6
作者 李状 柳亦兵 +1 位作者 滕伟 林杨 《振动.测试与诊断》 EI CSCD 北大核心 2017年第3期484-488,共5页
针对基于有监督学习的方法无法识别未知类别故障,提出了一种基于粒子群优化模糊核聚类(kernel fuzzy c-means clustering,简称KFCM)的风电机组齿轮箱故障诊断方法。首先,建立以训练样本分类错误率为目标的聚类模型,利用KFCM对训练样本... 针对基于有监督学习的方法无法识别未知类别故障,提出了一种基于粒子群优化模糊核聚类(kernel fuzzy c-means clustering,简称KFCM)的风电机组齿轮箱故障诊断方法。首先,建立以训练样本分类错误率为目标的聚类模型,利用KFCM对训练样本进行分类;然后,以初始聚类中心和核函数参数作为优化变量,利用粒子群优化算法求解聚类模型,获得最优分类结果下每个类的类心;最后,根据新样本与各类心之间的核空间样本相似度判断新样本属于已知故障或者未知故障。以某风电机组齿轮箱为例,对提出方法的有效性进行试验验证。结果表明,与传统基于有监督学习的神经网络方法相比,该方法能有效诊断已知和未知类别的故障。 展开更多
关键词 模糊核聚类 粒子群优化算法 风电机组 齿轮箱 故障诊断
在线阅读 下载PDF
基于KFCM和改进分水岭算法的猪肉背最长肌分割技术 被引量:14
7
作者 伍学千 廖宜涛 +1 位作者 樊玉霞 成芳 《农业机械学报》 EI CAS CSCD 北大核心 2010年第1期172-176,共5页
提出一种利用核模糊C均值聚类(KFCM)和改进分水岭算法分割猪肉眼肌切面图像中背最长肌区域的方法。该算法对经中值滤波去噪后图像的R分量利用最大方差自适应阈值(OTSU)去除背景,再采用KFCM提取出肌肉组织,然后进行空洞填充,最后由改进... 提出一种利用核模糊C均值聚类(KFCM)和改进分水岭算法分割猪肉眼肌切面图像中背最长肌区域的方法。该算法对经中值滤波去噪后图像的R分量利用最大方差自适应阈值(OTSU)去除背景,再采用KFCM提取出肌肉组织,然后进行空洞填充,最后由改进的分水岭算法分割出背最长肌区域。利用该算法对采集的60幅猪肉眼肌图像进行处理,分割正确率为86.67%;与传统的形态学算法相比,该算法能真实、完整地恢复出背最长肌区域。结果表明:该算法能有效地分割出猪肉眼肌图像中的背最长肌区域,与改进前分水岭算法相比,能避免背最长肌区域出现欠分割。 展开更多
关键词 无损检测 图像分割 猪肉 背最长肌 核模糊C均值聚类 分水岭算法
在线阅读 下载PDF
基于小波变换和KFCM的彩色图像分割 被引量:3
8
作者 李志梅 肖德贵 王丽丽 《计算机工程》 CAS CSCD 北大核心 2009年第19期203-205,共3页
提出一种将小波变换和核模糊C均值聚类算法相结合的快速彩色图像分割算法。利用小波变换的多分辨率特性,在分辨率最大尺度上的LL子带进行均值漂移聚类,快速获得初始粗分割结果,在其基础上进行模糊核聚类分割,将上一层的结果用于下一层... 提出一种将小波变换和核模糊C均值聚类算法相结合的快速彩色图像分割算法。利用小波变换的多分辨率特性,在分辨率最大尺度上的LL子带进行均值漂移聚类,快速获得初始粗分割结果,在其基础上进行模糊核聚类分割,将上一层的结果用于下一层的初始化,重复至最低分辨率后用最小分类器对原始图像进行最终分割。实验结果证明,该算法分割速度快,对自然彩色图像的分割结果优于模糊C均值算法和均值漂移算法。 展开更多
关键词 小波变换 图像分割 核模糊C均值聚类 均值漂移
在线阅读 下载PDF
基于样本密度KFCM新算法及其在故障诊断的应用 被引量:14
9
作者 陶新民 徐晶 +1 位作者 付强 刘兴丽 《振动与冲击》 EI CSCD 北大核心 2009年第8期61-64,83,共5页
针对传统核模糊聚类(KFCM)算法无法克服边界噪声数据影响且对初始聚类中心敏感的不足,提出一种基于样本密度和最大类间方差法相结合的KFCM算法。该算法在传统的KFCM算法中引入样本分布密度作为权重,克服噪声及边界数据对分类中心的影响... 针对传统核模糊聚类(KFCM)算法无法克服边界噪声数据影响且对初始聚类中心敏感的不足,提出一种基于样本密度和最大类间方差法相结合的KFCM算法。该算法在传统的KFCM算法中引入样本分布密度作为权重,克服噪声及边界数据对分类中心的影响,使样本的聚类效果更好,同时还可以分析各样本对聚类的贡献程度。此外利用最大类间方差法对样本密度进行分割,得到各类中心点并以此作为KFCM算法的初始聚类中心,克服了传统算法对初始值敏感的不足。对各种实际数据集的测试结果均显示出新算法的优良性能。最后利用新算法对轴承故障进行诊断,试验结果表明新算法的诊断率优于传统的聚类算法。 展开更多
关键词 核模糊聚类 样本密度 最大类间方差法 故障诊断
在线阅读 下载PDF
基于NSCT、KFCM和多模型LS-SVM的红外小目标检测 被引量:7
10
作者 吴一全 尹丹艳 吴诗婳 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第8期1704-1709,共6页
为了进一步提高红外小目标的检测性能,针对图像序列中背景与小目标的特点,提出了一种基于非下采样Contourlet变换(nonsubsampled contourlet transform,NSCT)和核模糊C均值(kernel fuzzy C means,KFCM)聚类多模型最小二乘支持向量机(lea... 为了进一步提高红外小目标的检测性能,针对图像序列中背景与小目标的特点,提出了一种基于非下采样Contourlet变换(nonsubsampled contourlet transform,NSCT)和核模糊C均值(kernel fuzzy C means,KFCM)聚类多模型最小二乘支持向量机(least squares support vector machine,LS-SVM)背景预测的检测方法。首先对红外小目标图像进行NSCT并去噪,提高图像的信噪比;然后通过基于核模糊C均值聚类的多模型LS-SVM预测去噪后红外图像中的背景,用去噪后的实际图像减去背景预测图像得到残差图像;接着提出基于递归最大类间绝对差的阈值选取算法分割残差图像;最后利用目标灰度的平稳性和运动轨迹的连续性进一步检测出真实的小目标。给出了实验结果与分析,并与现有的3种基于背景预测的小目标检测方法进行了比较。结果表明该方法具有更高的检测概率和信噪比增益。 展开更多
关键词 红外小目标检测 非下采样CONTOURLET变换 核模糊C均值聚类 最小二乘支持向量机 递归最大类间绝对差
在线阅读 下载PDF
模糊隶属度加权的KFCM脑MRI的组织分割方法 被引量:7
11
作者 赵海峰 陈书海 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2018年第11期2055-2062,共8页
医学图像受成像机制的影响不可避免地会引入噪声.为解决传统医学图像分割算法对噪声敏感的问题,提出一种模糊隶属度加权的KFCM分割方法.该方法在传统KFCM算法基础上引入局部空间信息,定义了局部隶属度函数,并结合传统KFCM算法得到的全... 医学图像受成像机制的影响不可避免地会引入噪声.为解决传统医学图像分割算法对噪声敏感的问题,提出一种模糊隶属度加权的KFCM分割方法.该方法在传统KFCM算法基础上引入局部空间信息,定义了局部隶属度函数,并结合传统KFCM算法得到的全局隶属度函数构造加权隶属度函数,为每个像素计算隶属度值;进一步地,结合邻域信息,使用迭代聚合方法为每个像素重新分配隶属度值.选取Simulated Brain Database数据集,对加入不同噪声的图像进行实验的结果表明,该方法在保证对噪声鲁棒的同时,能够提高分割精度. 展开更多
关键词 基于核函数的模糊C均值聚类 脑MRI 图像分割 核函数
在线阅读 下载PDF
基于NSCT和KFCM聚类的图像边缘检测方法 被引量:4
12
作者 吴一全 朱丽 李立 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第5期59-65,共7页
为进一步提高现有图像边缘检测方法的性能,提出了一种基于非下采样Contourlet变换(NSCT)和核模糊c-均值(KFCM)聚类的图像边缘检测方法.首先通过NSCT将原始图像分解成低频分量和高频分量;然后对含噪声较少的低频分量提取边缘信息,并采用K... 为进一步提高现有图像边缘检测方法的性能,提出了一种基于非下采样Contourlet变换(NSCT)和核模糊c-均值(KFCM)聚类的图像边缘检测方法.首先通过NSCT将原始图像分解成低频分量和高频分量;然后对含噪声较少的低频分量提取边缘信息,并采用KFCM聚类算法进行聚类得到低频边缘图像,以提高定位精度,而对于边缘细节信息较多的高频分量各个子带,通过模极大值检测边缘以减少伪边缘,丰富图像细节;最后对低频和高频图像边缘进行融合得到完整的边缘.实验结果表明,相比于Canny方法、边缘检测算子与模糊聚类结合的方法、边缘信息与混沌粒子群优化的模糊聚类结合的方法、NSCT域模极大值方法,文中方法具有更好的边缘检测效果,边缘定位准确、完整、连续、细节丰富. 展开更多
关键词 图像处理 边缘检测 非下采样CONTOURLET变换 核模糊c-均值聚类 模极大值
在线阅读 下载PDF
基于PSO_KFCM的医学图像分割 被引量:4
13
作者 裴振奎 胡萍萍 《计算机工程与设计》 CSCD 北大核心 2008年第9期2295-2296,2299,共3页
在核模糊聚类算法(KFCM)的基础上,提出了一种新的PSO_KFCM聚类算法。新算法利用高斯核函数,把输入空间的样本映射到高维特征空间,利用微粒群算法的全局搜索、快速收敛的特点,代替KFCM算法逐次迭代的过程,在特征空间中进行聚类,克服了KFC... 在核模糊聚类算法(KFCM)的基础上,提出了一种新的PSO_KFCM聚类算法。新算法利用高斯核函数,把输入空间的样本映射到高维特征空间,利用微粒群算法的全局搜索、快速收敛的特点,代替KFCM算法逐次迭代的过程,在特征空间中进行聚类,克服了KFCM对初始值和噪声数据敏感、易陷入局部最优的缺点。通过对医学图像进行分割,仿真实验结果表明,新算法在性能上比KFCM聚类算法有较大改进,具有更好的聚类效果,且算法能够很快地收敛。 展开更多
关键词 微粒群算法 核函数 图像分割 模糊C_均值聚类 特征空间
在线阅读 下载PDF
基于PCA-KFCM的船舶柴油机故障诊断 被引量:9
14
作者 彭秀艳 柴艳有 满新江 《控制工程》 CSCD 北大核心 2012年第1期152-156,共5页
为提高船舶柴油机故障诊断的准确率和深刻反映船舶柴油机的运行状况,结合主元分析(PCA)的特征提取优势和模糊核聚类(KFCM)具有较好聚类效果的特点,提出了一种新的船舶柴油机故障诊断方法。该方法首先利用主元分析对船舶柴油机故障的训... 为提高船舶柴油机故障诊断的准确率和深刻反映船舶柴油机的运行状况,结合主元分析(PCA)的特征提取优势和模糊核聚类(KFCM)具有较好聚类效果的特点,提出了一种新的船舶柴油机故障诊断方法。该方法首先利用主元分析对船舶柴油机故障的训练和测试数据集进行特征提取,消除了故障征兆之间的相关性;然后对经特征提取后的训练样本进行模糊核聚类,并用网格法确定其中的参数,得到聚类中心。通过计算测试样本集中各样本与聚类中心在高维特征空间中的欧氏距离,得出最终的故障诊断结果。对MAN B&W 10L90MC型船用柴油机的故障诊断结果验证了该方法的有效性。因此,应用提出的方法对船舶柴油机进行故障诊断具有重要的实际意义。 展开更多
关键词 船舶柴油机 故障诊断 主元分析 模糊核聚类
在线阅读 下载PDF
基于改进磷虾群优化的中心极大化KFCM算法在IDS的应用 被引量:6
15
作者 李丛 胡文军 +1 位作者 丁勇 曹红根 《计算机应用研究》 CSCD 北大核心 2016年第2期507-512,共6页
针对核模糊C-均值算法(kernel fuzzy C-means,KFCM)随机选择初始聚类中心而不能获得全局最优且在聚类中心较近或重合时易产生一致性聚类等问题,提出一种改进算法。改进算法在原目标函数中引入中心极大化约束项来调控簇间分离度,从而避... 针对核模糊C-均值算法(kernel fuzzy C-means,KFCM)随机选择初始聚类中心而不能获得全局最优且在聚类中心较近或重合时易产生一致性聚类等问题,提出一种改进算法。改进算法在原目标函数中引入中心极大化约束项来调控簇间分离度,从而避免算法出现一致性聚类结果。利用磷虾群算法对基于新目标函数的KFCM算法进行优化,使算法不再依赖初始聚类中心,提高算法的稳定性。基于距离最大最小原则产生多组较优的聚类中心作为初始磷虾群体并在算法迭代过程中融合一种新的精英保留策略,从而确保算法收敛到全局极值;通过对个体随机扩散活动进行分段式Logistic混沌扰动,提高算法全局寻优能力。使用KDD Cup 99入侵检测数据进行仿真实验表明,改进算法具有更好的检测性能,解决了传统的聚类算法在入侵检测中稳定性差、检测准确率低的问题。 展开更多
关键词 核模糊C-均值算法 磷虾群算法 中心极大化约束项 距离最大最小原则 精英保留策略 混沌扰动 入侵检测
在线阅读 下载PDF
基于KFCM-MNN并联式混合动力汽车能量管理策略 被引量:2
16
作者 孔慧芳 朱翔 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2018年第4期485-489,共5页
为了提高并联式混合动力汽车的燃油经济性,文章提出了一种基于核模糊c聚类(kernel fuzzy cmeans clustering,KFCM)的多神经网络(multi-neural network,MNN)能量管理设计方法。采用动态规划全局优化离线仿真得到全局最优解,使用KFCM算法... 为了提高并联式混合动力汽车的燃油经济性,文章提出了一种基于核模糊c聚类(kernel fuzzy cmeans clustering,KFCM)的多神经网络(multi-neural network,MNN)能量管理设计方法。采用动态规划全局优化离线仿真得到全局最优解,使用KFCM算法对全局最优解数据集合按照车辆运行模式作聚类划分,针对每一个聚类建立局部神经网络。训练后的MNN模型结构根据实时工况,将多个局部神经网络的输出联结作为能量管理策略的输出,以实现发动机和电机转矩的实时优化分配。仿真结果表明,基于KFCM-MNN的能量管理策略,具有对动态规划能量管理策略很好的学习模拟能力,是一种准最优的控制策略。 展开更多
关键词 并联式混合动力汽车 动态规划 多神经网络(MNN) 核模糊c聚类(kfcm) 能量管理策略
在线阅读 下载PDF
一种基于改进混合蛙跳的KFCM算法 被引量:2
17
作者 赵小强 刘悦婷 《计算机工程与应用》 CSCD 2013年第4期141-145,共5页
针对核模糊C-均值(KFCM)聚类算法存在易陷入局部极小值,对初始值敏感的缺点。将混合蛙跳算法(shuffled fro gleaping algorithm,SFLA)用于KFCM中,但在聚类数较大和维数较高时,聚类效果不理想,为此提出将自适应惯性权重引入混合蛙跳算法... 针对核模糊C-均值(KFCM)聚类算法存在易陷入局部极小值,对初始值敏感的缺点。将混合蛙跳算法(shuffled fro gleaping algorithm,SFLA)用于KFCM中,但在聚类数较大和维数较高时,聚类效果不理想,为此提出将自适应惯性权重引入混合蛙跳算法的更新策略中,再用改进后的混合蛙跳算法求得最优解作为KFCM算法的初始聚类中心,利用KFCM算法优化初始聚类中心,求得全局最优解,从而有效克服了KFCM算法的缺点。人造数据和经典数据集的实验结果表明,新算法与KFCM和FCM聚类算法相比,寻优能力更强,迭代次数更少,聚类效果更好。 展开更多
关键词 核模糊C-均值聚类 改进的混合蛙跳算法 聚类分析 数据挖掘
在线阅读 下载PDF
基于半监督KFCM及邻域信息的遥感图像分类算法 被引量:1
18
作者 宋文 刘升 肖建于 《计算机工程与应用》 CSCD 2014年第9期123-129,共7页
针对传统的模糊C-均值在遥感图像分类时容易产生局部最优现象以及对噪声过于敏感等问题,提出了一种基于半监督、核函数及空间邻域信息的模糊C-均值遥感图像分类算法。该算法基于遥感图像的光谱特征空间,根据地物的地表反射率大小进行聚... 针对传统的模糊C-均值在遥感图像分类时容易产生局部最优现象以及对噪声过于敏感等问题,提出了一种基于半监督、核函数及空间邻域信息的模糊C-均值遥感图像分类算法。该算法基于遥感图像的光谱特征空间,根据地物的地表反射率大小进行聚类;在聚类迭代过程中,考虑到像素单元空间邻域的相关性,根据空间邻域信息加权调整像素点的隶属度大小;引入了核理论,解决遥感图像分类的非线性问题,使用内核诱导距离取代原模糊C-均值中的欧氏距离,优化图像样本特征;算法还使用了半监督分类技术,充分利用少量的已知标记信息,达到提高分类精度的目的。实验结果表明,该算法能有效提高分类精度,有效抑制噪声干扰,减少了迭代次数和时间。 展开更多
关键词 遥感 半监督图像分类 空间邻域 核模糊C均值算法
在线阅读 下载PDF
基于改进MRF-KFCM有效区域分割的储能系统三维温度场重构方法 被引量:1
19
作者 潘国兵 王杰 欧阳静 《电工技术学报》 EI CSCD 北大核心 2020年第19期4019-4027,共9页
储能系统是微电网的核心组成部分,其热管理对于微电网的安全与稳定具有重要意义。相对于表面温度,电池堆内部温度场更有意义,针对红外热像仪无法监测电池堆内部温度场的问题,提出一种基于表面温度场与虚拟热源的三维温度场重构方法。通... 储能系统是微电网的核心组成部分,其热管理对于微电网的安全与稳定具有重要意义。相对于表面温度,电池堆内部温度场更有意义,针对红外热像仪无法监测电池堆内部温度场的问题,提出一种基于表面温度场与虚拟热源的三维温度场重构方法。通过分割算法将有效区域分离,利用定标将其映射为表面温度场,进而初步重构三维温度场,然后以虚拟热源对立体子单元温度进行修正。为了避免电池堆红外图像有效区域分割不准确对三维重构造成的影响,对马尔可夫随机场约束下的模糊核C均值聚类(MRF-KFCM)算法进行改进,通过Otsu算法在可见光图像中初步获得有效区域,赋予像元以不同的目标信息权重进行聚类,最后经配准得到电池堆在红外图像中的准确位置。实验结果表明,该方法能够反映电池堆内部温度变化趋势和局部差异,精度满足实际应用需求。 展开更多
关键词 储能系统热管理 三维温度场重构 MRF-kfcm 先验框目标信息 辐射定标
在线阅读 下载PDF
基于Boltzmann选择的人工蜂群KFCM算法 被引量:3
20
作者 赵小强 张守明 《兰州理工大学学报》 CAS 北大核心 2011年第1期71-75,共5页
为提高算法的搜索效率、减少搜索过程中陷入局部最优的现象,将人工蜂群算法用于核模糊C-均值聚类,但在聚类数比较大和维度较高时效果不太好,为此引入Boltzmann选择机制代替轮盘赌的选择方式,并采用小区间生成法使初始群体均匀化,使得该... 为提高算法的搜索效率、减少搜索过程中陷入局部最优的现象,将人工蜂群算法用于核模糊C-均值聚类,但在聚类数比较大和维度较高时效果不太好,为此引入Boltzmann选择机制代替轮盘赌的选择方式,并采用小区间生成法使初始群体均匀化,使得该算法的全局寻优能力更强,有效克服了KFCM算法易陷入局部最优的缺点.实验结果表明,对于聚类数比较大、维度较高的数据样本,新算法与FCM和KFCM聚类算法相比,聚类效果更准确,效率更高,迭代次数更少. 展开更多
关键词 数据挖掘 核模糊C-均值聚类 人工蜂群算法 Boltzmann选择机制
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部