期刊文献+
共找到187篇文章
< 1 2 10 >
每页显示 20 50 100
Cobalt crust recognition based on kernel Fisher discriminant analysis and genetic algorithm in reverberation environment 被引量:2
1
作者 ZHAO Hai-ming ZHAO Xiang +1 位作者 HAN Feng-lin WANG Yan-li 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期179-193,共15页
Recognition of substrates in cobalt crust mining areas can improve mining efficiency.Aiming at the problem of unsatisfactory performance of using single feature to recognize the seabed material of the cobalt crust min... Recognition of substrates in cobalt crust mining areas can improve mining efficiency.Aiming at the problem of unsatisfactory performance of using single feature to recognize the seabed material of the cobalt crust mining area,a method based on multiple-feature sets is proposed.Features of the target echoes are extracted by linear prediction method and wavelet analysis methods,and the linear prediction coefficient and linear prediction cepstrum coefficient are also extracted.Meanwhile,the characteristic matrices of modulus maxima,sub-band energy and multi-resolution singular spectrum entropy are obtained,respectively.The resulting features are subsequently compressed by kernel Fisher discriminant analysis(KFDA),the output features are selected using genetic algorithm(GA)to obtain optimal feature subsets,and recognition results of classifier are chosen as genetic fitness function.The advantages of this method are that it can describe the signal features more comprehensively and select the favorable features and remove the redundant features to the greatest extent.The experimental results show the better performance of the proposed method in comparison with only using KFDA or GA. 展开更多
关键词 feature extraction kernel Fisher discriminant analysis(KFDA) genetic algorithm multiple feature sets cobalt crust recognition
在线阅读 下载PDF
基于SRKDA的系统故障演化过程分解方法研究 被引量:2
2
作者 崔铁军 李莎莎 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第3期196-202,共7页
为研究系统故障演化过程中可能蕴含的多种演化特征,对演化过程的分解进行研究,提出基于谱回归核判别分析(SRKDA)的演化过程分解方法。首先介绍演化过程的特点和分解原理,其次论证对象集合对演化过程的可表示性,给出分解方法流程,最后进... 为研究系统故障演化过程中可能蕴含的多种演化特征,对演化过程的分解进行研究,提出基于谱回归核判别分析(SRKDA)的演化过程分解方法。首先介绍演化过程的特点和分解原理,其次论证对象集合对演化过程的可表示性,给出分解方法流程,最后进行实例分析。研究结果表明:分解演化过程本质上是对象与系统功能状态对应关系的确定,各对象集合都对应了各自的子演化过程;线性和非线性条件下对象可表示各种功能状态;对象标签矩阵须满足标签值的均匀分布特征;使用SRKDA算法可以确定最大准确度和最优对象标签集合,实现演化过程的分解;实例分析得到在20000次迭代后最大准确度为0.85,3个子演化过程分别包含41,33,26个对象。研究结果可为系统故障过程的特征分析提供参考方法。 展开更多
关键词 安全系统工程 系统故障演化过程 SRkda 演化分解方法 最大准确度 对象标签矩阵
在线阅读 下载PDF
基于支持向量的Kernel判别分析 被引量:10
3
作者 张宝昌 陈熙霖 +1 位作者 山世光 高文 《计算机学报》 EI CSCD 北大核心 2006年第12期2143-2150,共8页
提出了一种新的基于支持向量的核化判别分析方法(SV-KFD).首先深入地分析了支持向量机(SVM)以及核化费舍尔判别分析(KernelFisher)方法的相互关系.基于作者证明的SVM本身所固有的零空间性质:SVM分类面的法向量在基于支持向量的类内散度... 提出了一种新的基于支持向量的核化判别分析方法(SV-KFD).首先深入地分析了支持向量机(SVM)以及核化费舍尔判别分析(KernelFisher)方法的相互关系.基于作者证明的SVM本身所固有的零空间性质:SVM分类面的法向量在基于支持向量的类内散度矩阵条件下,具有零空间特性,提出了利用SVM的法向量定义核化的决策边界特征矩阵(KernelizedDecisionBoundaryFeatureMatrix,KDBFM)的方法.进一步结合均值向量的差向量构建扩展决策边界特征矩阵(Ex-KDBFM).最后以支持向量为训练集合,结合零空间方法来计算投影空间,该投影空间被用来从原始图像中提取判别特征.以人脸识别为例,作者在FERET和CAS-PEAL-R1大规模人脸图像数据库上对所提出的方法进行了实验验证,测试结果表明该方法具有比传统核判别分析方法更好的识别性能. 展开更多
关键词 人脸识别 支持向量机 核分析 判别分析 零空间
在线阅读 下载PDF
量子核判别分析算法
4
作者 康榕乘 余凯 +2 位作者 张新 林崧 郭躬德 《郑州大学学报(理学版)》 CAS 北大核心 2025年第1期61-66,共6页
核判别分析法通过核函数扩展了线性判别分析对非线性数据的处理能力,成为模式识别领域中一个重要的分支。然而,随着数据的指数增长,经典核判别分析算法在提取特征时会消耗大量计算资源。针对这一问题,利用量子叠加性和并行性提出了一种... 核判别分析法通过核函数扩展了线性判别分析对非线性数据的处理能力,成为模式识别领域中一个重要的分支。然而,随着数据的指数增长,经典核判别分析算法在提取特征时会消耗大量计算资源。针对这一问题,利用量子叠加性和并行性提出了一种量子核判别分析算法。首先,借助量子随机存储器技术与控制旋转操作构造需要的类间矩阵和类内矩阵所对应的密度算子;然后,融入线性方程的求解思路并行获取特征态。理论分析表明,所提算法与经典算法相比具有指数级加速。 展开更多
关键词 量子机器学习 非线性判别分析 核函数 特征提取 量子厄米特链积 相位估计
在线阅读 下载PDF
基于LDA+kernel-KNNFLC的语音情感识别方法 被引量:8
5
作者 张昕然 查诚 +2 位作者 徐新洲 宋鹏 赵力 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第1期5-11,共7页
结合K近邻、核学习方法、特征线重心法和LDA算法,提出了用于情感识别的LDA+kernel-KNNFLC方法.首先针对先验样本特征造成的计算量庞大问题,采用重心准则学习样本距离,改进了核学习的K近邻方法;然后加入LDA对情感特征向量进行优化,在避... 结合K近邻、核学习方法、特征线重心法和LDA算法,提出了用于情感识别的LDA+kernel-KNNFLC方法.首先针对先验样本特征造成的计算量庞大问题,采用重心准则学习样本距离,改进了核学习的K近邻方法;然后加入LDA对情感特征向量进行优化,在避免维度冗余的情况下,更好地保证了情感信息识别的稳定性.最后,通过对特征空间再学习,结合LDA的kernel-KNNFLC方法优化了情感特征向量的类间区分度,适合于语音情感识别.对包含120维全局统计特征的语音情感数据库进行仿真实验,对降维方案、情感分类器和维度参数进行了多组对比分析.结果表明,LDA+kernel-KNNFLC方法在同等条件下性能提升效果最显著. 展开更多
关键词 语音情感识别 K近邻 核学习 特征重心线 线性判别分析
在线阅读 下载PDF
一种融合KPCA和KDA的人脸识别新方法 被引量:4
6
作者 周晓彦 郑文明 《计算机应用》 CSCD 北大核心 2008年第5期1263-1266,共4页
核判别分析(KDA)和核主成分分析(KPCA)分别是线性判别分析(LDA)和主成分分析(PCA)在核空间中的非线性推广,提出了一种融合KDA和KPCA的特征提取方法并应用于人脸识别中,该方法综合利用KDA和KPCA的优点来提高人脸识别的性能。此外,还提出... 核判别分析(KDA)和核主成分分析(KPCA)分别是线性判别分析(LDA)和主成分分析(PCA)在核空间中的非线性推广,提出了一种融合KDA和KPCA的特征提取方法并应用于人脸识别中,该方法综合利用KDA和KPCA的优点来提高人脸识别的性能。此外,还提出了一种广义最近特征线(GNFL)方法来构造有效的分类器。实验结果证明:提出的方法获得了更好的识别结果。 展开更多
关键词 核判别分析 核主成分分析 广义最近特征线 人脸识别
在线阅读 下载PDF
基于KDA和SVM的文档分类算法 被引量:1
7
作者 王自强 钱旭 《计算机应用》 CSCD 北大核心 2009年第2期416-418,共3页
为了高效地解决Web文档分类问题,提出了一种基于核鉴别分析方法KDA和SVM的文档分类算法。该算法首先利用KDA对训练集中的高维Web文档空间进行降维,然后在降维后的低维特征空间中利用乘性更新规则优化的SVM进行分类预测。采用了文档分类... 为了高效地解决Web文档分类问题,提出了一种基于核鉴别分析方法KDA和SVM的文档分类算法。该算法首先利用KDA对训练集中的高维Web文档空间进行降维,然后在降维后的低维特征空间中利用乘性更新规则优化的SVM进行分类预测。采用了文档分类领域两个著名的数据集Reuters-21578和20-Newsgroup进行实验,实验结果表明该算法不仅获得了更高的分类准确率,而且具有较少的运行时间。 展开更多
关键词 文档分类 核鉴别分析 支持向量机 数据挖掘
在线阅读 下载PDF
基于DCT和KDA的人脸特征提取新方法 被引量:2
8
作者 王孝国 张雄伟 《电子科技大学学报》 EI CAS CSCD 北大核心 2006年第4期450-453,共4页
提出了一种新的人脸特征提取方法,该方法采用DCT对人脸图像进行降维和去噪,并通过KDA提取人脸特征。基于该特征,采用NN分类器,对ORL人脸库进行分类识别,仅用28个特征平均识别率就达到97.3%,“留一法”识别率为99.5%。仿真结果表明:该方... 提出了一种新的人脸特征提取方法,该方法采用DCT对人脸图像进行降维和去噪,并通过KDA提取人脸特征。基于该特征,采用NN分类器,对ORL人脸库进行分类识别,仅用28个特征平均识别率就达到97.3%,“留一法”识别率为99.5%。仿真结果表明:该方法有效地滤除了人脸图像中的高频干扰信息,明显增强了特征的辨别能力,同时显著地降低了特征维数和计算复杂度。 展开更多
关键词 人脸识别 核辨别分析 最近邻分类器
在线阅读 下载PDF
基于核Fisher判别分析的船舶中央冷却器状态评估
9
作者 吴小豪 邹永久 刘军朴 《舰船科学技术》 北大核心 2025年第2期185-189,共5页
为实现船舶系统或设备的实时状态评估,本文采用核Fisher判别分析法,以船舶中央冷却器为例,选择合适的核函数及核参数,利用其正常数据和异常数据建立状态评估模型,即最佳投影方向,并利用过程数据验证其有效性。结果表明,核Fisher判别分... 为实现船舶系统或设备的实时状态评估,本文采用核Fisher判别分析法,以船舶中央冷却器为例,选择合适的核函数及核参数,利用其正常数据和异常数据建立状态评估模型,即最佳投影方向,并利用过程数据验证其有效性。结果表明,核Fisher判别分析法无需深入分析中央冷却器的结构与原理即可有效识别中央冷却器的正常工况和异常工况,同时能够通过投影值准确描述过程工况的变化过程。在故障发展初期,根据运行参数投影值的变化趋势,可判断船舶系统或设备状态的发展趋势,为早期发现船舶系统或设备的重复性故障提供有效手段。对于船舶系统或设备而言,具有重要的工程实际应用意义。 展开更多
关键词 智能船舶 状态评估 核Fisher判别分析法 中央冷却器 最佳投影方向 重复性故障
在线阅读 下载PDF
基于KLDA-IDBO-BP的装甲车发动机故障诊断 被引量:1
10
作者 李英顺 于昂 +2 位作者 李茂 贺喆 刘师铭 《兵工学报》 北大核心 2025年第3期105-113,共9页
润滑油在发动机中发挥作用时携带着大量关于发动机的状态信息,能够对发动机产生的故障进行表征,可利用其对发动机进行故障诊断。以某型装甲车辆发动机为研究对象,提出一种基于核线性判别和改进的蜣螂优化算法优化反向传播(Back Propagat... 润滑油在发动机中发挥作用时携带着大量关于发动机的状态信息,能够对发动机产生的故障进行表征,可利用其对发动机进行故障诊断。以某型装甲车辆发动机为研究对象,提出一种基于核线性判别和改进的蜣螂优化算法优化反向传播(Back Propagation,BP)神经网络的故障诊断方法。对获取的润滑油数据通过核线性判别分析进行降维处理,降维后的数据作为BP神经网络的输入,通过引入最优拉丁超立方、权重因子以及Levy飞行策略对蜣螂优化算法进行改进,进一步对BP神经网络的关键参数进行优化,建立故障诊断模型,实现对测试数据的故障预测。实验结果验证了新方法在进行故障诊断预测方面的有效性,为装甲车辆发动机的维护和修理提供了科学依据。 展开更多
关键词 润滑油信息 发动机 故障诊断 蜣螂优化算法 反向传播神经网络 核线性判别分析
在线阅读 下载PDF
基于KDA/GSVD和支持向量机的人耳识别
11
作者 赵海龙 穆志纯 +1 位作者 张霞 敦文杰 《计算机科学》 CSCD 北大核心 2009年第2期257-260,共4页
在高维、小样本的情况下使用Fisher线性鉴别分析的特征提取方法存在病态奇异问题,学者们提出了许多解决此问题的方法。针对小样本问题,并通过对现有人耳识别方法的研究,提出了一种利用KDA/GSVD算法对图像数据进行降维,运用SVM分类器对... 在高维、小样本的情况下使用Fisher线性鉴别分析的特征提取方法存在病态奇异问题,学者们提出了许多解决此问题的方法。针对小样本问题,并通过对现有人耳识别方法的研究,提出了一种利用KDA/GSVD算法对图像数据进行降维,运用SVM分类器对样本进行判别的人耳识别方法。此外,还对线性判别分析、广义奇异值分解和支持向量机的基本理论等内容做了简要介绍。实验证明,KDA/GSVD很好地解决了由于小样本的问题而导致的LDA算法中类内离散度矩阵不可求逆的问题,把它与支持向量机有机地结合起来,构成了一种有效的人耳识别新方法。 展开更多
关键词 人耳识别 线性判别分析 广义奇异值分解 kda/GSVD 支持向量机
在线阅读 下载PDF
结合Gabor小波变换与2DKDA特征提取的人脸识别 被引量:1
12
作者 肖存涛 《科学技术与工程》 2010年第19期4823-4826,共4页
提出了一种结合Gabor小波变换和二维核判别分析(2DKDA)的新型特征提取方法。算法首先对人脸图像进行Ga-bor变换,然后通过二维核判别分析进行特征提取,可以很好地保留图像的几何特征和非线性特征。通过在标准人脸数据库上的测试表明,该... 提出了一种结合Gabor小波变换和二维核判别分析(2DKDA)的新型特征提取方法。算法首先对人脸图像进行Ga-bor变换,然后通过二维核判别分析进行特征提取,可以很好地保留图像的几何特征和非线性特征。通过在标准人脸数据库上的测试表明,该方法较其他传统的二维特征提取方法具有更高的识别效率。 展开更多
关键词 人脸识别 二维核判别分析 GABOR变换
在线阅读 下载PDF
基于Fisher_BP的入侵检测方法研究
13
作者 万佳蓉 王绍杰 《计算机应用与软件》 北大核心 2025年第3期371-376,共6页
工业控制系统面临的威胁增多,为做到主动防御,以及更加准确地识别入侵数据类型,基于工控蜜罐的部署环境,设计一种模型,用来识别入侵数据具体类型。首先对捕获的数据进行核主成分分析(Kernel Principal Component Analysis,KPCA)降维,然... 工业控制系统面临的威胁增多,为做到主动防御,以及更加准确地识别入侵数据类型,基于工控蜜罐的部署环境,设计一种模型,用来识别入侵数据具体类型。首先对捕获的数据进行核主成分分析(Kernel Principal Component Analysis,KPCA)降维,然后利用Fisher算法对处理后的数据进行分类,如果判定为异常类,则再利用BP神经网络(Back Propagation neural network)进行二次判别,确定具体的入侵类别。实验结果表明,该方法检测率可达到95%,可以较好地对数据进行分类,判定具体的入侵类型。 展开更多
关键词 工业控制系统 工控蜜罐 核主成分分析 FISHER判别 BP神经网络
在线阅读 下载PDF
基于模块化2DPCA和CSKDA的人脸验证
14
作者 袁宁 吴小俊 +2 位作者 王士同 杨静宇 Josef Kittler 《计算机工程》 CAS CSCD 北大核心 2009年第7期172-174,205,共4页
针对客户相关的核判别分析(CSKDA)对图像列向量进行处理数据维数大、计算复杂,对图像整体处理没有考虑到局部特征等缺点,提出M2DPCA和CSKDA结合的方法。新方法对二维数据进行分块后采用2DPCA抽取局部特征,施行CSKDA,不仅考虑了类内、类... 针对客户相关的核判别分析(CSKDA)对图像列向量进行处理数据维数大、计算复杂,对图像整体处理没有考虑到局部特征等缺点,提出M2DPCA和CSKDA结合的方法。新方法对二维数据进行分块后采用2DPCA抽取局部特征,施行CSKDA,不仅考虑了类内、类间的差异,而且可以较好地描述不同个体人脸间的差异性。在XM2VTS和ORL人脸库上的实验结果表明,该方法在验证效果上优于CSKDA方法。 展开更多
关键词 客户相关的核判别分析 模块化2DPCA 特征抽取 人脸验证
在线阅读 下载PDF
基于KPCA与KLPP及Wilks统计量的留兰香三维荧光数据特征提取与鉴别分析
15
作者 殷勇 徐非凡 +1 位作者 于慧春 袁云霞 《农业工程学报》 EI CAS CSCD 北大核心 2024年第19期272-280,共9页
为实现留兰香产地的快速鉴别,该研究提出了一种核主成分分析(kernel principal component analysis,KPCA)与核局部保持投影(kernel locality preserving projections,KLPP)及WilksΛ统计量序贯融合的特征波长提取策略,在此基础上鉴别5... 为实现留兰香产地的快速鉴别,该研究提出了一种核主成分分析(kernel principal component analysis,KPCA)与核局部保持投影(kernel locality preserving projections,KLPP)及WilksΛ统计量序贯融合的特征波长提取策略,在此基础上鉴别5个产地的留兰香。首先,在采集5个产地300个留兰香样本的三维荧光数据后,运用三角形内插值法去除原始光谱中的瑞利散射和拉曼散射,并运用SG(Savitzky-Golay)对数据进行平滑预处理。然后,对预处理后的荧光光谱数据分别利用KPCA、KPCA+KLPP、KPCA+WilksΛ统计量、 KPCA+KLPP+WilksΛ统计量4种方法提取特征激发波长和特征发射波长。接着,按特征激发波长从小到大顺序将其对应的特征发射波长光谱值首尾相连转换成行向量;4种方法从300个样本中各得到1个300行的特征波长光谱值矩阵。再者,运用Fisher判别分析(fisher discriminant analysis,FDA)对特征波长光谱值矩阵进行数据可分性融合,生成可分性FD(fisher discriminant)变量。选取前4个累计判别能力达到99%的FD变量作为鉴别模型的输入向量。最后,用支持向量机(support vector machine,SVM)算法分析4个FD变量,分别得到对应于4种特征提取波长方法的FDA+SVM鉴别结果,其正确率分别为92.00%、96.00%、94.67%、100%。结果表明,所提出的KPCA+KLPP+WilksΛ统计量序贯融合的特征波长提取策略能够有效减少三维荧光光谱数据的冗余,并能表征原始荧光数据的信息特征,实现了5种留兰香产地的正确鉴别。该研究可为后续利用三维荧光光谱开展留兰香重要组分量化分析提供一定的基础。 展开更多
关键词 荧光光谱 判别分析 模型 留兰香 核主成分分析
在线阅读 下载PDF
基于NIRS的小麦不完善粒精确快速评定方法研究 被引量:1
16
作者 马洪娟 冀定磊 +2 位作者 赵殿仁 卢函姝 王敏欣 《中国粮油学报》 CSCD 北大核心 2024年第12期195-200,共6页
小麦不完善粒是评价小麦品质的重要指标。目前小麦不完善粒的检验在我国主要依靠人工识别实现,存在结果不客观、重复性差、效率低、工作量大的缺陷。近红外是一种可同时分析多组分的无损检测技术,有望取代人工识别,实现小麦不完善粒的... 小麦不完善粒是评价小麦品质的重要指标。目前小麦不完善粒的检验在我国主要依靠人工识别实现,存在结果不客观、重复性差、效率低、工作量大的缺陷。近红外是一种可同时分析多组分的无损检测技术,有望取代人工识别,实现小麦不完善粒的快速、准确、自动化检测。本研究以中国不同地区不同品种的2169粒小麦样品为对象,在运动条件下采集其近红外漫反射光谱,并使用一种线性判别算法:判别式偏最小二乘法(PLS-DA)和一种深度学习算法:堆栈式自编码器(SAE)对小麦不完善粒情况进行识别,研究旨在探索快速、准确判别小麦不完善粒的近红外方法的可行性。PLS-DA模型使用联合区间间隔偏最小二乘法(SiPLS)优化,其校正和验证的平均识别准确率分别为88.41%和86.62%。SAE模型采用双隐藏层的神经网络结构,SAE模型的校正和验证的平均识别准确率分别为92.52%和90.52%。结果表明:SAE的多层神经网络结构较好地学习了小麦的光谱特征,因而比PLS-DA模型具有更好的识别性能。 展开更多
关键词 近红外 小麦 不完善粒 判别式偏最小二乘 堆栈式自编码器
在线阅读 下载PDF
一种基于核的快速非线性鉴别分析方法 被引量:9
17
作者 徐勇 杨静宇 +1 位作者 金忠 娄震 《计算机研究与发展》 EI CSCD 北大核心 2005年第3期367-374,共8页
基于"核技巧"提出的新的非线性鉴别分析方法在最小二乘意义上与基于核的Fisher鉴别分析方法等效,相应鉴别方向通过一个线性方程组得出,计算代价较小,相应分类实现极其简便.该方法的最大优点是,对训练数据进行筛选,可使构造鉴... 基于"核技巧"提出的新的非线性鉴别分析方法在最小二乘意义上与基于核的Fisher鉴别分析方法等效,相应鉴别方向通过一个线性方程组得出,计算代价较小,相应分类实现极其简便.该方法的最大优点是,对训练数据进行筛选,可使构造鉴别矢量的"显著"训练模式数大大低于总训练模式数,从而使得测试集的分类非常高效;同时,设计出专门的优化算法以加速"显著"训练模式的选取.实验表明,这种非线性方法不仅具有明显的效率上的优势,且具有不低于基于核的Fisher鉴别分析方法的性能. 展开更多
关键词 基于核的Fisher鉴别分析 基于核的快速非线性鉴别分析 最小二乘解 特征抽取
在线阅读 下载PDF
基于广义判别分析的光谱分类 被引量:9
18
作者 许馨 杨金福 +1 位作者 吴福朝 赵永恒 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2006年第10期1960-1964,共5页
提出了基于广义判别分析(generalized discriminant analysis,GDA)方法对恒星(Star)、星系(Galaxy)和类星体(Quasars)的光谱进行分类。广义判别分析将核技巧与Fisher判别分析结合起来,通过非线性映射将样本集映射到高维特征空间F,在F空... 提出了基于广义判别分析(generalized discriminant analysis,GDA)方法对恒星(Star)、星系(Galaxy)和类星体(Quasars)的光谱进行分类。广义判别分析将核技巧与Fisher判别分析结合起来,通过非线性映射将样本集映射到高维特征空间F,在F空间中进行线性判别分析。实验对比了LDA,GDA,PCA,KPCA算法对于恒星、星系和类星体的光谱分类性能。结果表明基于GDA的算法对于这3种类型光谱的分类正确率最高,LDA次之;尽管KPCA也是一种基于核的方法,但是选择主成分个数较少时效果较差,甚至低于LDA;基于PCA的分类效果最差。 展开更多
关键词 光谱分类 广义判别分析 线性判别分析 核主成分分析
在线阅读 下载PDF
基于核统计不相关最优鉴别矢量集的GIS局部放电模式识别 被引量:10
19
作者 张晓星 唐炬 +1 位作者 孙才新 姚尧 《电工技术学报》 EI CSCD 北大核心 2008年第9期111-117,共7页
GIS局部放电故障诊断对于准确掌握GIS内部的缺陷性质和指导GIS的检修工作有着重要意义。针对线性Fisher鉴别分析用于局部放电故障诊断时存在的问题,文中借鉴核方法思想,提出了一种基于核的统计不相关鉴别矢量集算法(KSUODV),用以解决高... GIS局部放电故障诊断对于准确掌握GIS内部的缺陷性质和指导GIS的检修工作有着重要意义。针对线性Fisher鉴别分析用于局部放电故障诊断时存在的问题,文中借鉴核方法思想,提出了一种基于核的统计不相关鉴别矢量集算法(KSUODV),用以解决高维特征空间内的非线性特征提取问题,并且消除了变换后样本特征之间的统计相关性。在对实验室获取的7种缺陷PD三维谱图模式识别试验表明,KSUODV算法的识别性能优于SUODV算法性能,效果良好。 展开更多
关键词 气体绝缘电器 局部放电 模式识别 FISHER鉴别分析
在线阅读 下载PDF
高光谱最优波长选择及Fisher判别分析法判别玉米颗粒表面黄曲霉毒素 被引量:23
20
作者 褚璇 王伟 +3 位作者 张录达 郭浪花 Peggy Feldner Gerald Heitschmidt 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第7期1811-1815,共5页
黄曲霉毒素是广泛存在于玉米中且具有剧毒的一种代谢产物,以美国农业部农业研究署(USDA-ARS) Toxicology and Mycotoxin Research Unit提供的2010年先锋玉米为研究对象,验证了高光谱成像技术对玉米中黄曲霉毒素检测的可行性。以甲... 黄曲霉毒素是广泛存在于玉米中且具有剧毒的一种代谢产物,以美国农业部农业研究署(USDA-ARS) Toxicology and Mycotoxin Research Unit提供的2010年先锋玉米为研究对象,验证了高光谱成像技术对玉米中黄曲霉毒素检测的可行性。以甲醇为溶剂制备四种不同浓度的黄曲霉毒素溶液,并将其逐一滴在等量的4组共120粒玉米颗粒表面,以未处理的30粒洁净玉米作为一组对照样本,将大小、形状相似的150个样品随机分为训练集103个,验证集47个;对获取的400~1000 nm波段范围内的高光谱图像,先进行标准正态变量变换(standard normal variate transformation ,SNV)预处理,然后引入基于 Fisher判别最小误判率的方法选择最优波长,并以所选波长作为Fisher判别分析法的输入建立判别模型,对玉米颗粒表面不同浓度的黄曲霉毒素进行识别,最后对模型判别正确率进行了验证。结果表明,选取四个最优波长(812.42,873.00,900.36和965.00 nm )时Fisher判别分析模型对训练集与验证集的准确率分别为87.4%和80.9%。该方法为含黄曲霉毒素玉米颗粒便携式检测仪器的开发,以及对田间霉变玉米自然代谢产生毒素的检测奠定了技术基础。 展开更多
关键词 最优波长 Fisher判别分析法 玉米颗粒 黄曲霉毒素 近红外高光谱图像
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部