A generalized labeled multi-Bernoulli(GLMB)filter with motion mode label based on the track-before-detect(TBD)strategy for maneuvering targets in sea clutter with heavy tail,in which the transitions of the mode of tar...A generalized labeled multi-Bernoulli(GLMB)filter with motion mode label based on the track-before-detect(TBD)strategy for maneuvering targets in sea clutter with heavy tail,in which the transitions of the mode of target motions are modeled by using jump Markovian system(JMS),is presented in this paper.The close-form solution is derived for sequential Monte Carlo implementation of the GLMB filter based on the TBD model.In update,we derive a tractable GLMB density,which preserves the cardinality distribution and first-order moment of the labeled multi-target distribution of interest as well as minimizes the Kullback-Leibler divergence(KLD),to enable the next recursive cycle.The relevant simulation results prove that the proposed multiple-model GLMB-TBD(MM-GLMB-TBD)algorithm based on K-distributed clutter model can improve the detecting and tracking performance in both estimation error and robustness compared with state-of-the-art algorithms for sea clutter background.Additionally,the simulations show that the proposed MM-GLMB-TBD algorithm can accurately output the multitarget trajectories with considerably less computational complexity compared with the adapted dynamic programming based TBD(DP-TBD)algorithm.Meanwhile,the simulation results also indicate that the proposed MM-GLMB-TBD filter slightly outperforms the JMS particle filter based TBD(JMSMeMBer-TBD)filter in estimation error with the basically same computational cost.Finally,the impact of the mismatches on the clutter model and clutter parameter is investigated for the performance of the MM-GLMB-TBD filter.展开更多
For the target threat evaluation of warships formation air defense, the sample data are frequently insufficient and even incomplete. The existing evaluation methods rely too much on expertise and are difficult to carr...For the target threat evaluation of warships formation air defense, the sample data are frequently insufficient and even incomplete. The existing evaluation methods rely too much on expertise and are difficult to carry out for the dynamic evaluation on time series. In order to solve these problems, a threat evaluation method based on the AR(p)(auto regressive(AR))-dynamic improved technique for order preference by similarity to ideal solution(DITOPSIS) method is proposed. The AR(p) model is adopted to predict the missing data on the time series. Then, the entropy weight method is applied to solve each index weight at the objective point. Kullback-Leibler divergence(KLD) is used to improve the traditional TOPSIS, and to carry out the target threat evaluation. The Poisson distribution is used to assign the weight value.Simulation results show that the improved AR(p)-DITOPSIS threat evaluation method can synthetically take into account the target threat degree in time series and is more suitable for the threat evaluation under the condition of missing the target data than the traditional TOPSIS method.展开更多
The problem considered here is to assess the Bayesian influence on the unknown param-eter matrices in a grwoth curve model with the general covariance structure.Under the non-information prior distribution assumption,...The problem considered here is to assess the Bayesian influence on the unknown param-eter matrices in a grwoth curve model with the general covariance structure.Under the non-information prior distribution assumption,the Kullback-Leibler divergence is employed to eval-uate the effect of a designated response matrix on the posterior distribution of the parameter matrix.展开更多
基金supported by the Fund for Foreign Scholars in University Research and Teaching Programs(B18039)Shaanxi Youth Fund(202J-JC-QN-0668).
文摘A generalized labeled multi-Bernoulli(GLMB)filter with motion mode label based on the track-before-detect(TBD)strategy for maneuvering targets in sea clutter with heavy tail,in which the transitions of the mode of target motions are modeled by using jump Markovian system(JMS),is presented in this paper.The close-form solution is derived for sequential Monte Carlo implementation of the GLMB filter based on the TBD model.In update,we derive a tractable GLMB density,which preserves the cardinality distribution and first-order moment of the labeled multi-target distribution of interest as well as minimizes the Kullback-Leibler divergence(KLD),to enable the next recursive cycle.The relevant simulation results prove that the proposed multiple-model GLMB-TBD(MM-GLMB-TBD)algorithm based on K-distributed clutter model can improve the detecting and tracking performance in both estimation error and robustness compared with state-of-the-art algorithms for sea clutter background.Additionally,the simulations show that the proposed MM-GLMB-TBD algorithm can accurately output the multitarget trajectories with considerably less computational complexity compared with the adapted dynamic programming based TBD(DP-TBD)algorithm.Meanwhile,the simulation results also indicate that the proposed MM-GLMB-TBD filter slightly outperforms the JMS particle filter based TBD(JMSMeMBer-TBD)filter in estimation error with the basically same computational cost.Finally,the impact of the mismatches on the clutter model and clutter parameter is investigated for the performance of the MM-GLMB-TBD filter.
基金supported by the Postdoctoral Science Foundation of China(2013T60923)
文摘For the target threat evaluation of warships formation air defense, the sample data are frequently insufficient and even incomplete. The existing evaluation methods rely too much on expertise and are difficult to carry out for the dynamic evaluation on time series. In order to solve these problems, a threat evaluation method based on the AR(p)(auto regressive(AR))-dynamic improved technique for order preference by similarity to ideal solution(DITOPSIS) method is proposed. The AR(p) model is adopted to predict the missing data on the time series. Then, the entropy weight method is applied to solve each index weight at the objective point. Kullback-Leibler divergence(KLD) is used to improve the traditional TOPSIS, and to carry out the target threat evaluation. The Poisson distribution is used to assign the weight value.Simulation results show that the improved AR(p)-DITOPSIS threat evaluation method can synthetically take into account the target threat degree in time series and is more suitable for the threat evaluation under the condition of missing the target data than the traditional TOPSIS method.
文摘The problem considered here is to assess the Bayesian influence on the unknown param-eter matrices in a grwoth curve model with the general covariance structure.Under the non-information prior distribution assumption,the Kullback-Leibler divergence is employed to eval-uate the effect of a designated response matrix on the posterior distribution of the parameter matrix.