期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于KHT程序的RDX基含铝炸药JWL状态方程参数预测研究 被引量:15
1
作者 项大林 荣吉利 +2 位作者 李健 冯晓军 王浩 《北京理工大学学报》 EI CAS CSCD 北大核心 2013年第3期239-243,共5页
为预测炸药的JWL状态方程参数,根据KHT状态方程编制了KHT程序,计算得到的RDX基含铝炸药的爆轰参数与实验值具有良好的一致性,证明了KHT程序的可信性.在此基础上,利用KHT程序计算的爆轰产物等熵膨胀数据,对RDX基含铝炸药的JWL状态方程参... 为预测炸药的JWL状态方程参数,根据KHT状态方程编制了KHT程序,计算得到的RDX基含铝炸药的爆轰参数与实验值具有良好的一致性,证明了KHT程序的可信性.在此基础上,利用KHT程序计算的爆轰产物等熵膨胀数据,对RDX基含铝炸药的JWL状态方程参数进行了预测.将预测的JWL状态方程参数输入到AU-TODYN软件中,对1kg RDX基含铝炸药水下4.7m爆炸试验进行了数值模拟仿真,对比了不同爆距处冲击波压力峰值的试验值与仿真值,两者符合较好.研究结果表明,利用KHT程序计算的等熵膨胀数据对JWL状态方程参数进行预测是可行的,预测的参数是可用的. 展开更多
关键词 JWL状态方程 kht程序 RDX基含铝炸药 参数预测 冲击波压力峰值
在线阅读 下载PDF
Study on the prediction and inverse prediction of detonation properties based on deep learning 被引量:4
2
作者 Zi-hang Yang Ji-li Rong Zi-tong Zhao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期18-30,共13页
The accurate and efficient prediction of explosive detonation properties has important engineering significance for weapon design.Traditional methods for predicting detonation performance include empirical formulas,eq... The accurate and efficient prediction of explosive detonation properties has important engineering significance for weapon design.Traditional methods for predicting detonation performance include empirical formulas,equations of state,and quantum chemical calculation methods.In recent years,with the development of computer performance and deep learning methods,researchers have begun to apply deep learning methods to the prediction of explosive detonation performance.The deep learning method has the advantage of simple and rapid prediction of explosive detonation properties.However,some problems remain in the study of detonation properties based on deep learning.For example,there are few studies on the prediction of mixed explosives,on the prediction of the parameters of the equation of state of explosives,and on the application of explosive properties to predict the formulation of explosives.Based on an artificial neural network model and a one-dimensional convolutional neural network model,three improved deep learning models were established in this work with the aim of solving these problems.The training data for these models,called the detonation parameters prediction model,JWL equation of state(EOS)prediction model,and inverse prediction model,was obtained through the KHT thermochemical code.After training,the model was tested for overfitting using the validation-set test.Through the model-accuracy test,the prediction accuracy of the model for real explosive formulations was tested by comparing the predicted value with the reference value.The results show that the model errors were within 10%and 3%for the prediction of detonation pressure and detonation velocity,respectively.The accuracy refers to the prediction of tested explosive formulations which consist of TNT,RDX and HMX.For the prediction of the equation of state for explosives,the correlation coefficient between the prediction and the reference curves was above 0.99.For the prediction of the inverse prediction model,the prediction error of the explosive equation was within 9%.This indicates that the models have utility in engineering. 展开更多
关键词 Deep learning Detonation properties kht thermochemical code JWL equation of states Artificial neural network One-dimensional convolutional neural network
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部