期刊文献+
共找到2,505篇文章
< 1 2 126 >
每页显示 20 50 100
Fusion Algorithm Based on Improved A^(*)and DWA for USV Path Planning
1
作者 Changyi Li Lei Yao Chao Mi 《哈尔滨工程大学学报(英文版)》 2025年第1期224-237,共14页
The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,wh... The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,which is not conducive to the control of USV and also affects navigation safety.In this paper,these problems were addressed through the following improvements.First,the path search angle and security were comprehensively considered,and a security expansion strategy of nodes based on the 5×5 neighborhood was proposed.The A^(*)algorithm search neighborhood was expanded from 3×3 to 5×5,and safe nodes were screened out for extension via the node security expansion strategy.This algorithm can also optimize path search angles while improving path security.Second,the distance from the current node to the target node was introduced into the heuristic function.The efficiency of the A^(*)algorithm was improved,and the path was smoothed using the Floyd algorithm.For the dynamic adjustment of the weight to improve the efficiency of DWA,the distance from the USV to the target point was introduced into the evaluation function of the dynamic-window approach(DWA)algorithm.Finally,combined with the local target point selection strategy,the optimized DWA algorithm was performed for local path planning.The experimental results show the smooth and safe path planned by the fusion algorithm,which can successfully avoid dynamic obstacles and is effective and feasible in path planning for USVs. 展开更多
关键词 Improved A^(*)algorithm Optimized DWA algorithm Unmanned surface vehicles path planning Fusion algorithm
在线阅读 下载PDF
Ship Path Planning Based on Sparse A^(*)Algorithm
2
作者 Yongjian Zhai Jianhui Cui +3 位作者 Fanbin Meng Huawei Xie Chunyan Hou Bin Li 《哈尔滨工程大学学报(英文版)》 2025年第1期238-248,共11页
An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorith... An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorithms.This algorithm considers factors such as initial position and orientation of the ship,safety range,and ship draft to determine the optimal obstacle-avoiding route from the current to the destination point for ship planning.A coordinate transformation algorithm is also applied to convert commonly used latitude and longitude coordinates of ship travel paths to easily utilized and analyzed Cartesian coordinates.The algorithm incorporates a hierarchical chart processing algorithm to handle multilayered chart data.Furthermore,the algorithm considers the impact of ship length on grid size and density when implementing chart gridification,adjusting the grid size and density accordingly based on ship length.Simulation results show that compared to traditional path planning algorithms,the sparse A^(*)algorithm reduces the average number of path points by 25%,decreases the average maximum storage node number by 17%,and raises the average path turning angle by approximately 10°,effectively improving the safety of ship planning paths. 展开更多
关键词 Sparse A^(*)algorithm path planning RASTERIZATION Coordinate transformation Image preprocessing
在线阅读 下载PDF
Improving path planning efficiency for underwater gravity-aided navigation based on a new depth sorting fast search algorithm
3
作者 Xiaocong Zhou Wei Zheng +2 位作者 Zhaowei Li Panlong Wu Yongjin Sun 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期285-296,共12页
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi... This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results. 展开更多
关键词 Depth Sorting Fast Search algorithm Underwater gravity-aided navigation path planning efficiency Quick Rapidly-exploring Random Trees*(QRRT*)
在线阅读 下载PDF
Path planning in uncertain environment by using firefly algorithm 被引量:16
4
作者 B.K.Patle Anish Pandey +1 位作者 A.Jagadeesh D.R.Parhi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第6期691-701,共11页
Autonomous mobile robot navigation is one of the most emerging areas of research by using swarm intelligence. Path planning and obstacle avoidance are most researched current topics like navigational challenges for mo... Autonomous mobile robot navigation is one of the most emerging areas of research by using swarm intelligence. Path planning and obstacle avoidance are most researched current topics like navigational challenges for mobile robot. The paper presents application and implementation of Firefly Algorithm(FA)for Mobile Robot Navigation(MRN) in uncertain environment. The uncertainty is defined over the changing environmental condition from static to dynamic. The attraction of one firefly towards the other firefly due to variation of their brightness is the key concept of the proposed study. The proposed controller efficiently explores the environment and improves the global search in less number of iterations and hence it can be easily implemented for real time obstacle avoidance especially for dynamic environment. It solves the challenges of navigation, minimizes the computational calculations, and avoids random moving of fireflies. The performance of proposed controller is better in terms of path optimality when compared to other intelligent navigational approaches. 展开更多
关键词 Mobile robot NAVIGATION FIREFLY algorithm path planning OBSTACLE AVOIDANCE
在线阅读 下载PDF
Efficient AUV Path Planning in Time-Variant Underwater Environment Using Differential Evolution Algorithm 被引量:5
5
作者 S.Mahmoud Zadeh D.M.W Powers +2 位作者 A.M.Yazdani K.Sammut A.Atyabi 《Journal of Marine Science and Application》 CSCD 2018年第4期585-591,共7页
Robust and efficient AUV path planning is a key element for persistence AUV maneuvering in variable underwater environments. To develop such a path planning system, in this study, differential evolution(DE) algorithm ... Robust and efficient AUV path planning is a key element for persistence AUV maneuvering in variable underwater environments. To develop such a path planning system, in this study, differential evolution(DE) algorithm is employed. The performance of the DE-based planner in generating time-efficient paths to direct the AUV from its initial conditions to the target of interest is investigated within a complexed 3D underwater environment incorporated with turbulent current vector fields, coastal area,islands, and static/dynamic obstacles. The results of simulations indicate the inherent efficiency of the DE-based path planner as it is capable of extracting feasible areas of a real map to determine the allowed spaces for the vehicle deployment while coping undesired current disturbances, exploiting desirable currents, and avoiding collision boundaries in directing the vehicle to its destination. The results are implementable for a realistic scenario and on-board real AUV as the DE planner satisfies all vehicular and environmental constraints while minimizing the travel time/distance, in a computationally efficient manner. 展开更多
关键词 path planning Differential evolution Autonomous UNDERWATER vehicles EVOLUTIONARY algorithms OBSTACLE AVOIDANCE
在线阅读 下载PDF
Application of GA, PSO, and ACO Algorithms to Path Planning of Autonomous Underwater Vehicles 被引量:8
6
作者 Mohammad Pourmahmood Aghababa Mohammad Hossein Amrollahi Mehdi Borjkhani 《Journal of Marine Science and Application》 2012年第3期378-386,共9页
In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwa... In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwater vehicles were computed using a nnmerical solution of a nonlinear optimal control problem (NOCP). An energy performance index as a cost function, which should be minimized, was defmed. The resulting problem was a two-point boundary value problem (TPBVP). A genetic algorithm (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) algorithms were applied to solve the resulting TPBVP. Applying an Euler-Lagrange equation to the NOCP, a conjugate gradient penalty method was also adopted to solve the TPBVP. The problem of energetic environments, involving some energy sources, was discussed. Some near-optimal paths were found using a GA, PSO, and ACO algorithms. Finally, the problem of collision avoidance in an energetic environment was also taken into account. 展开更多
关键词 path planning autonomous underwater vehicle genetic algorithm (GA) particle swarmoptimization (PSO) ant colony optimization (ACO) collision avoidance
在线阅读 下载PDF
Improved lazy theta algorithm based on octree map for path planning of UAV 被引量:1
7
作者 Meng-shun Yuan Tong-le Zhou Mou Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期8-18,共11页
This paper investigates the path planning method of unmanned aerial vehicle(UAV)in threedimensional map.Firstly,in order to keep a safe distance between UAV and obstacles,the obstacle grid in the map is expanded.By us... This paper investigates the path planning method of unmanned aerial vehicle(UAV)in threedimensional map.Firstly,in order to keep a safe distance between UAV and obstacles,the obstacle grid in the map is expanded.By using the data structure of octree,the octree map is constructed,and the search nodes is significantly reduced.Then,the lazy theta*algorithm,including neighbor node search,line-of-sight algorithm and heuristics weight adjustment is improved.In the process of node search,UAV constraint conditions are considered to ensure the planned path is actually flyable.The redundant nodes are reduced by the line-of-sight algorithm through judging whether visible between two nodes.Heuristic weight adjustment strategy is employed to control the precision and speed of search.Finally,the simulation results show that the improved lazy theta*algorithm is suitable for path planning of UAV in complex environment with multi-constraints.The effectiveness and flight ability of the algorithm are verified by comparing experiments and real flight. 展开更多
关键词 Unmanned aerial vehicle path planning Lazy theta*algorithm Octree map Line-of-sight algorithm
在线阅读 下载PDF
Path Planning for Lunar Surface Robots Based on Improved Ant Colony Algorithm 被引量:1
8
作者 SONG Ting SUN Yuqi +2 位作者 YUAN Jianping YANG Haiyue WU Xiande 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第6期672-683,共12页
In the real-world situation,the lunar missions’scale and terrain are different according to various operational regions or worksheets,which requests a more flexible and efficient algorithm to generate task paths.A mu... In the real-world situation,the lunar missions’scale and terrain are different according to various operational regions or worksheets,which requests a more flexible and efficient algorithm to generate task paths.A multi-scale ant colony planning method for the lunar robot is designed to meet the requirements of large scale and complex terrain in lunar space.In the algorithm,the actual lunar surface image is meshed into a gird map,the path planning algorithm is modeled on it,and then the actual path is projected to the original lunar surface and mission.The classical ant colony planning algorithm is rewritten utilizing a multi-scale method to address the diverse task problem.Moreover,the path smoothness is also considered to reduce the magnitude of the steering angle.Finally,several typical conditions to verify the efficiency and feasibility of the proposed algorithm are presented. 展开更多
关键词 ant colony algorithm grid map multi scale path smoothing
在线阅读 下载PDF
Application of A* Algorithm for Real-time Path Re-planning of an Unmanned Surface Vehicle Avoiding Underwater Obstacles 被引量:9
9
作者 Thanapong Phanthong Toshihiro Maki +2 位作者 Tamaki Ura Takashi Sakamaki Pattara Aiyarak 《Journal of Marine Science and Application》 2014年第1期105-116,共12页
This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environment... This paper describes path re-planning techniques and underwater obstacle avoidance for unmanned surface vehicle(USV) based on multi-beam forward looking sonar(FLS). Near-optimal paths in static and dynamic environments with underwater obstacles are computed using a numerical solution procedure based on an A* algorithm. The USV is modeled with a circular shape in 2 degrees of freedom(surge and yaw). In this paper, two-dimensional(2-D) underwater obstacle avoidance and the robust real-time path re-planning technique for actual USV using multi-beam FLS are developed. Our real-time path re-planning algorithm has been tested to regenerate the optimal path for several updated frames in the field of view of the sonar with a proper update frequency of the FLS. The performance of the proposed method was verified through simulations, and sea experiments. For simulations, the USV model can avoid both a single stationary obstacle, multiple stationary obstacles and moving obstacles with the near-optimal trajectory that are performed both in the vehicle and the world reference frame. For sea experiments, the proposed method for an underwater obstacle avoidance system is implemented with a USV test platform. The actual USV is automatically controlled and succeeded in its real-time avoidance against the stationary undersea obstacle in the field of view of the FLS together with the Global Positioning System(GPS) of the USV. 展开更多
关键词 UNDERWATER OBSTACLE AVOIDANCE real-time pathre-planning A* algorithm SONAR image unmanned surface vehicle
在线阅读 下载PDF
Minimum dose path planning for facility inspection based on the discrete Rao-combined ABC algorithm in radioactive environments with obstacles
10
作者 Kwon Ryong Hong Su Il O +2 位作者 Ryon Hui Kim Tae Song Kim Jang Su Kim 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第4期26-40,共15页
Workers who conduct regular facility inspections in radioactive environments will inevitably be affected by radiation.Therefore,it is important to optimize the inspection path to ensure that workers are exposed to the... Workers who conduct regular facility inspections in radioactive environments will inevitably be affected by radiation.Therefore,it is important to optimize the inspection path to ensure that workers are exposed to the least amount of radiation.This study proposes a discrete Rao-combined artificial bee colony(ABC)algorithm for planning inspection paths with minimum exposure doses in radioactive environments with obstacles.In this algorithm,retaining the framework of the traditional ABC algorithm,we applied the directional solution update rules of Rao algorithms at the employed bee stage and onlooker bee stage to increase the exploitation ability of the algorithm and implement discretion using the swap operator and swap sequence.To increase the randomness of solution generation,the chaos algorithm was used at the initialization stage.The K-opt operation technique was introduced at the scout bee stage to increase the exploration ability of the algorithm.For path planning in an environment with complex structural obstacles,an obstacle detour technique using a recursive algorithm was applied.To evaluate the performance of the proposed algorithm,we performed experimental simulations in three hypothetical environments and compared the results with those of improved particle swarm optimization,chaos particle swarm optimization,improved ant colony optimization,and discrete Rao’s algorithms.The experimental results show the high performance of the proposed discrete Rao-combined ABC algorithm and its obstacle detour capability. 展开更多
关键词 Minimum dose path planning Nuclear facility inspection ABC algorithm Rao algorithms Swap sequence K-opt operation
在线阅读 下载PDF
A Practical Parallel Algorithm for All-Pair Shortest Path Based on Pipelining
11
作者 Hua Wang Ling Tian Chun-Hua Jiang 《Journal of Electronic Science and Technology of China》 2008年第3期329-333,共5页
On the basis of Floyd algorithm with the extended path matrix, a parallel algorithm which resolves all-pair shortest path (APSP) problem on cluster environment is analyzed and designed. Meanwhile, the parallel APSP ... On the basis of Floyd algorithm with the extended path matrix, a parallel algorithm which resolves all-pair shortest path (APSP) problem on cluster environment is analyzed and designed. Meanwhile, the parallel APSP pipelining algorithm makes full use of overlapping technique between computation and communication. Compared with broadcast operation, the parallel algorithm reduces communication cost. This algorithm has been implemented on MPI on PC-cluster. The theoretical analysis and experimental results show that the parallel algorithm is an efficient and scalable algorithm. 展开更多
关键词 All-pair shortest path Floyd algorithm PIPELINING parallel algorithm
在线阅读 下载PDF
基于HTML的Web系统在植保机中的应用研究
12
作者 陈伟卫 《农机化研究》 北大核心 2025年第3期181-185,共5页
为了实现农田信息的实时监控,将农田信息进行可视化处理,设计了本系统。植保机作为农田中数据采集节点和地面工作站的中继站,可实现将农田信息上传地面工作站,且可利用HTML完成农田数据的Web可视化处理。同时,依据通讯路径损耗,确定通... 为了实现农田信息的实时监控,将农田信息进行可视化处理,设计了本系统。植保机作为农田中数据采集节点和地面工作站的中继站,可实现将农田信息上传地面工作站,且可利用HTML完成农田数据的Web可视化处理。同时,依据通讯路径损耗,确定通讯频率为430M,植保机飞行高度为750 m;基于模拟退火算法,实现植保机飞行路径规划;利用HTML完成用户Web网页设计;并对系统进行测试。测试结果表明:土壤湿度监控精度相对误差分布区间为[0.57%, 2.79%],Web网页可以实现各数据节点农田信息的实时显示。 展开更多
关键词 植保机 路径规划 模拟退火算法 WEB可视化
在线阅读 下载PDF
基于WPA的农业运输车辆路径优化模型研究
13
作者 李慧 《农机化研究》 北大核心 2025年第6期252-257,共6页
农业运输车辆路径优化是农业物流领域的关键问题之一。为了实现农产品运输配送成本和碳排放量低等问题,提出了一种基于狼群算法(Wolf Pack Algorithm,WPA)的农业运输车辆路径优化模型,将农业运输车辆路径优化问题建模为一种多目标优化... 农业运输车辆路径优化是农业物流领域的关键问题之一。为了实现农产品运输配送成本和碳排放量低等问题,提出了一种基于狼群算法(Wolf Pack Algorithm,WPA)的农业运输车辆路径优化模型,将农业运输车辆路径优化问题建模为一种多目标优化问题。以最小化总行驶距离和最小化运输时间为研究目标,通过定义适应度函数,并结合狼群算法的搜索策略,实现了农业运输车辆路径的优化。针对黑龙江某农场水稻收获运输配送问题的实际需要,采用所提出的WPA优化模型完成了水稻运输车辆路径方案的优化,并与传统优化方法进行对比,结果表明:基于狼群算法的路径优化模型在农业配送总成本上平均节省了7.97%,碳排放量上平均降低了6.88%。优化后的路径方案可以显著缩短运输距离和时间,提高了农业物流的效率,并最大限度地利用运输资源。 展开更多
关键词 农业运输车 路径规划 狼群算法 多目标优化 适应度函数
在线阅读 下载PDF
基于障碍密度优先策略改进A^(*)算法的AGV路径规划
14
作者 陈一馨 段宇轩 +2 位作者 刘豪 谭世界 郑天乐 《郑州大学学报(工学版)》 北大核心 2025年第2期26-34,共9页
针对传统A^(*)算法在障碍物较多的实际场景下进行AGV路径规划时,存在路径拐点多、路径冗余节点过多以及易陷入局部最优解等问题,提出一种改进A^(*)算法,采用栅格法进行环境建模。首先,在启发函数中引入障碍物密度函数K(n)改进代价函数,... 针对传统A^(*)算法在障碍物较多的实际场景下进行AGV路径规划时,存在路径拐点多、路径冗余节点过多以及易陷入局部最优解等问题,提出一种改进A^(*)算法,采用栅格法进行环境建模。首先,在启发函数中引入障碍物密度函数K(n)改进代价函数,用于更准确地估计当前节点到目标节点的实际代价;其次,采用动态邻域搜索策略提高算法的搜索效率和运行效率;最后,通过冗余节点处理策略减少路径拐点和删除冗余节点,得到只包含起点、转折点以及终点的路径。采用不同尺寸和复杂度的栅格环境地图进行仿真实验,结果表明:所提改进A^(*)算法与传统A^(*)算法以及其他改进的A^(*)算法相比,路径长度分别缩短了4.71%和2.07%,路径拐点数量分别减少了45.45%和20.54%,路径存在节点分别减少了82.24%和62.45%。 展开更多
关键词 路径规划 栅格地图 改进A^(*)算法 启发函数 动态邻域搜索 冗余节点优化
在线阅读 下载PDF
多障碍环境下巡检机器人路径规划优化研究
15
作者 乔道迹 张艳兵 《现代电子技术》 北大核心 2025年第1期130-134,共5页
针对大规模、密集的障碍物分布,高效地搜索最佳路径是一个挑战,为规划出更短的巡检路线,并实现多障碍环境下的灵活避障,文中提出一种多障碍环境下巡检机器人路径规划优化方法。使用二维矩阵构建巡检环境模型,应用D*算法在巡检环境模型... 针对大规模、密集的障碍物分布,高效地搜索最佳路径是一个挑战,为规划出更短的巡检路线,并实现多障碍环境下的灵活避障,文中提出一种多障碍环境下巡检机器人路径规划优化方法。使用二维矩阵构建巡检环境模型,应用D*算法在巡检环境模型中进行巡检机器人路径规划,并将传统D*算法中的扩展步长方式改变为自适应扩展步长,使机器人在面积较大的巡检场地能够更快地完成巡检;将代价函数由欧氏距离替换为切比雪夫诺距离和曼哈顿距离融合的代价函数,并引入了平滑度函数优化线路规划结果,使规划的路径更为平滑,在遇到由于多种原因产生的新障碍物时可以重新规划路径。通过实验结果可知,无论是静态地图还是动态地图,该方法均可以快速准确地规划出一条最佳路线,并且在多种环境中应用该方法能够高效获取路径规划结果。 展开更多
关键词 多障碍 巡检机器人 路径规划 D*算法 动态环境 扩展节点 代价函数 扩展步长
在线阅读 下载PDF
基于改进A^(*)算法的机器人路径规划
16
作者 苏畅 张曼 《兰州工业学院学报》 2025年第1期103-106,共4页
针对经典A^(*)算法对于喷射混凝土机器人在煤矿巷道作业中存在求解路径容易转向、轨迹耗时长、搜索节点多、路径转折安全性能低等路径规划问题,提出一种改进的A^(*)算法。首先对启发函数权重优化,然后删除冗余节点,最后通过三次B样条曲... 针对经典A^(*)算法对于喷射混凝土机器人在煤矿巷道作业中存在求解路径容易转向、轨迹耗时长、搜索节点多、路径转折安全性能低等路径规划问题,提出一种改进的A^(*)算法。首先对启发函数权重优化,然后删除冗余节点,最后通过三次B样条曲线法降低喷浆机器人的路径转折角度,增加机器人工作的安全性。仿真结果表明:与现有算法相比,所提方案寻路时间节省了30%左右,平均节点个数减少了39%左右。 展开更多
关键词 路径规划 改进A^(*)算法 喷浆机器人 评价函数
在线阅读 下载PDF
终端区离场航空器自主路径规划
17
作者 王红勇 郭宇鹏 《北京航空航天大学学报》 北大核心 2025年第2期446-456,共11页
随着航空器自主保持间隔运行概念的逐渐发展,基于连续爬升运行(CCO)模式,可有效解决当前终端区内航空器离场路径固定单一所造成空域运行效率低问题。为此,提出一种基于人工势场-粒子群优化(APF-PSO)联合算法的终端区离场航空器自主路径... 随着航空器自主保持间隔运行概念的逐渐发展,基于连续爬升运行(CCO)模式,可有效解决当前终端区内航空器离场路径固定单一所造成空域运行效率低问题。为此,提出一种基于人工势场-粒子群优化(APF-PSO)联合算法的终端区离场航空器自主路径规划方法。构建面向航空器自主运行模式的空域环境模型,对空域环境进行栅格化处理并计算各栅格的空域复杂度,限制离场航空器进入高复杂度栅格以保障运行安全;构建基于BADA数据库和减退力爬升模式的航空器爬升性能约束模型;应用APF-PSO联合算法进行路径规划,通过粒子群优化(PSO)算法广域搜索思想解决人工势场法(APF)固有的局部极值-目标不可达问题;使用贝塞尔曲线法优化该路径,引入滑动时间窗口理念优化航空器离场时刻;使用上海终端空域的实际结构和运行数据,应用所提方法进行仿真模拟。仿真结果表明:APF-PSO联合算法可有效生成航空器无冲突离场路径并规避繁忙空域,优化处理后的路径满足航空器爬升性能约束,且优于实际运行路径(路径长度减少23.78%,最大转弯率降低55.73%,最大爬升率降低9.94%);离场航空器自主运行模式下的空中交通复杂性较当前运行模式更为均衡(栅格复杂度峰值降低3.92%),可有效提升空域利用率。 展开更多
关键词 航空运输 航空器自主运行 连续爬升运行 路径规划 人工势场-粒子群优化算法 空中交通管理
在线阅读 下载PDF
元启发式算法在植保无人机路径规划中的研究进展 被引量:1
18
作者 张旭东 于丽娅 +2 位作者 李少波 张安思 张保 《农机化研究》 北大核心 2025年第3期1-9,共9页
随着无人机系统技术、传感器技术和人工智能算法等相关技术的不断发展,植保无人机路径规划技术在农业生产中备受重视,并被广泛应用。作为航空植保的关键技术之一,植保无人机路径规划面临的是一个复杂且多约束的组合优化问题。传统算法... 随着无人机系统技术、传感器技术和人工智能算法等相关技术的不断发展,植保无人机路径规划技术在农业生产中备受重视,并被广泛应用。作为航空植保的关键技术之一,植保无人机路径规划面临的是一个复杂且多约束的组合优化问题。传统算法往往难以得到理想的结果,而元启发式算法则因其高效率成为解决该类优化问题的有效手段。为此,首先介绍了农业航空中的路径规划,随后总结出了植保无人机路径规划的关键要素,并使用更为合理的分类方式进行归纳;其次,从算法层面对相关研究所采用的元启发式算法进行分类和梳理,并阐述了其在实际应用中的现状,且根据提出的分类方法和研究特点,全面地归纳了当前的研究成果;最后,针对目前植保无人机路径规划研究存在的问题提出了几条可行的发展思路。 展开更多
关键词 农机航空 植保无人机 路径规划 元启发式算法 乡村振兴 农业现代化
在线阅读 下载PDF
基于改进人工势场法的避障路径规划研究 被引量:1
19
作者 纪苏宁 曹景胜 +1 位作者 刘世江 李刚 《现代电子技术》 北大核心 2025年第1期117-122,共6页
传统的人工势场法(APF)在路径规划领域因其简单性和高效性而被广泛采用,然而,这种方法往往会遇到局部最小值的问题,并且在动态环境中的适应性有限。为了解决这些问题,文中提出一种基于模拟退火算法(SA)改进的人工势场法。该改进方法结... 传统的人工势场法(APF)在路径规划领域因其简单性和高效性而被广泛采用,然而,这种方法往往会遇到局部最小值的问题,并且在动态环境中的适应性有限。为了解决这些问题,文中提出一种基于模拟退火算法(SA)改进的人工势场法。该改进方法结合人工势场法的实时避障能力和模拟退火法的全局优化特性,在所提出的改进方法中,通过在局部极小值附近添加随机目标点,使用模拟退火算法进行优化,从而有助于跳出局部最小值,并逐渐逼近全局最优或近似最优解。通过一系列的仿真实验表明,与传统人工势场法相比,基于模拟退火法的改进方法能够显著减少陷入局部最小值的情况,并在多种动态场景中表现出更强的鲁棒性和更优的路径规划效果。此外,该方法还展现了良好的实时性和适应性,能够满足车辆在复杂动态环境中进行避障和路径规划的需求。 展开更多
关键词 车辆路径规划 人工势场法 模拟退火算法 动态避障 局部极小值 随机目标点
在线阅读 下载PDF
基于改进APF-QRRT^(*)策略的移动机器人路径规划
20
作者 刘文浩 余胜东 +4 位作者 吴鸿源 胡文科 李小鹏 蔡博凡 马金玉 《电光与控制》 北大核心 2025年第1期21-26,33,共7页
针对Q-RRT^(*)算法在路径规划过程中无法兼顾可达性和安全性的问题,提出一种改进APF-QRRT^(*)(IAPF-QRRT^(*))路径规划策略。IAPF-QRRT^(*)策略通过Q-RRT^(*)算法获得一组连接起点到终点的离散关键路径点,较传统的快速搜索随机树(RRT^(... 针对Q-RRT^(*)算法在路径规划过程中无法兼顾可达性和安全性的问题,提出一种改进APF-QRRT^(*)(IAPF-QRRT^(*))路径规划策略。IAPF-QRRT^(*)策略通过Q-RRT^(*)算法获得一组连接起点到终点的离散关键路径点,较传统的快速搜索随机树(RRT^(*))算法具备更好的初始解和更快的收敛速度。改进传统人工势场(APF)方法获得一种新的无势正交向量场,在一定条件下使整体排斥向量场与吸引向量场正交,并将其作用于关键路径点,从而提高路径的安全性。将IAPF-QRRT^(*)策略与其他算法比较,通过数值模拟实验证明了所提策略的有效性。 展开更多
关键词 移动机器人 路径规划 人工势场法 Q-RRT^(*)算法 安全性
在线阅读 下载PDF
上一页 1 2 126 下一页 到第
使用帮助 返回顶部