期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Computational Intelligence Prediction Model Integrating Empirical Mode Decomposition,Principal Component Analysis,and Weighted k-Nearest Neighbor 被引量:2
1
作者 Li Tang He-Ping Pan Yi-Yong Yao 《Journal of Electronic Science and Technology》 CAS CSCD 2020年第4期341-349,共9页
On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feat... On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feature extraction process integrating a forward rolling empirical mode decomposition(EMD)for financial time series signal analysis and principal component analysis(PCA)for the dimension reduction.The information-rich features are extracted then input to a weighted KNN classifier where the features are weighted with PCA loading.Finally,prediction is generated via regression on the selected nearest neighbors.The structure of the model as a whole is original.The test results on real historical data sets confirm the effectiveness of the models for predicting the Chinese stock index,an individual stock,and the EUR/USD exchange rate. 展开更多
关键词 Empirical mode decomposition(EMD) k-nearest neighbor(knn) principal component analysis(PCA) time series
在线阅读 下载PDF
Using FCM to Select Samples in Semi-Supervised Classification
2
作者 Chao Zhang Jian-Mei Cheng Liang-Zhong Yi 《Journal of Electronic Science and Technology》 CAS 2012年第2期130-134,共5页
For a semi-supervised classification system, with the increase of the training samples number, the system needs to be continually updated. As the size of samples set is increasing, many unreliable samples will also be... For a semi-supervised classification system, with the increase of the training samples number, the system needs to be continually updated. As the size of samples set is increasing, many unreliable samples will also be increased. In this paper, we use fuzzy c-means (FCM) clustering to take out some samples that are useless, and extract the intersection between the original training set and the cluster after using FCM clustering. The intersection between every class and cluster is reliable samples which we are looking for. The experiment result demonstrates that the superiority of the proposed algorithm is remarkable. 展开更多
关键词 Fuzzy c-means clustering fuzzy k-nearest neighbor classifier instance selection.
在线阅读 下载PDF
基于训练特征空间分布的雷达地面目标鉴别器设计 被引量:9
3
作者 李龙 刘峥 《电子与信息学报》 EI CSCD 北大核心 2016年第4期950-957,共8页
该文对雷达地面目标高分辨1维距离像目标识别中的库外目标鉴别问题,提出一种基于训练特征空间分布的雷达地面目标鉴别器。在训练阶段利用基于相关系数预处理的K-Means聚类方法对库内目标样本特征空间进行区域划分,并采用基于空间分布的... 该文对雷达地面目标高分辨1维距离像目标识别中的库外目标鉴别问题,提出一种基于训练特征空间分布的雷达地面目标鉴别器。在训练阶段利用基于相关系数预处理的K-Means聚类方法对库内目标样本特征空间进行区域划分,并采用基于空间分布的支撑向量域描述方法确定样本特征空间的边界与支撑向量,利用样本特征空间边界与加权K近邻原则对目标类别进行判决。该方法解决了库内目标与库外目标的鉴别问题,提高了目标识别系统的总体性能。针对多种不同姿态下目标特征空间非均匀聚合的特点,对训练样本特征空间进行区域划分,减小模板匹配搜索运算规模,保证目标鉴别所需的实时性工作要求。最后通过仿真和实测数据验证了该方法具备优良的鉴别性能与良好的实时处理能力。 展开更多
关键词 目标鉴别 高分辨距离像 K-MEANS聚类 支撑向量域描述 K近邻分类器
在线阅读 下载PDF
相关流形距离在转子故障数据集分类中的应用方法 被引量:7
4
作者 赵荣珍 赵孝礼 +1 位作者 何敬举 刘韵佳 《振动与冲击》 EI CSCD 北大核心 2017年第18期125-130,139,共7页
针对故障特征属性值域之间存在着一定相关性导致准确分类困难的问题,提出一种能够考虑相关系数影响作用的转子故障数据集分类方法;该方法是将相关流形距离的边界Fisher分析(Correlation Manifold Distance Marginal Fisher Analysis,CDM... 针对故障特征属性值域之间存在着一定相关性导致准确分类困难的问题,提出一种能够考虑相关系数影响作用的转子故障数据集分类方法;该方法是将相关流形距离的边界Fisher分析(Correlation Manifold Distance Marginal Fisher Analysis,CDMFA)与相关流形距离的K-近邻(Correlation Manifold Distance K-Nearest Neighbor,CDKNN)分类器概念相结合在一起的结果。首先,将振动信号集合转换成多域、多通道高维故障特征数据集;然后,通过CDMFA将融合相关系数的相关流形距离用于度量数据样本间的近邻与权值,据此能更好地反映高维数据间的相似性关系,提取出能使类间距离趋大的低维特征子集;最后,将得到的低维特征子集输入到CDKNN分类器中进行故障模式辨识。用一个双跨度转子系统数据集与仿真数据集对所提出的方法进行了验证。结果表明:本方法降维效果良好,可获得更高的故障分类准确率。研究发现,采用相关流形距离作为信息测度的故障数据分类方法能更真实地揭示出高维特征间的几何结构关系;该方法可为高维故障数据集的特征属性约简与分类,提供降低数据规模的理论参考依据。 展开更多
关键词 故障分类 相关流形距离 边界Fisher分析 K近邻分类器 转子故障数据集
在线阅读 下载PDF
近邻概率距离在旋转机械故障集分类中的应用方法 被引量:12
5
作者 李霁蒲 赵荣珍 《振动与冲击》 EI CSCD 北大核心 2018年第11期48-54,共7页
针对多种故障类型的特征属性相互交叉导致故障难以辨识的问题,提出一种考虑相邻点之间成为近邻点概率的新度量函数。将新提出的近邻概率距离(Nearby Probability Distance,NPD)应用于局部保持投影算法(Locality Preserving Projection,L... 针对多种故障类型的特征属性相互交叉导致故障难以辨识的问题,提出一种考虑相邻点之间成为近邻点概率的新度量函数。将新提出的近邻概率距离(Nearby Probability Distance,NPD)应用于局部保持投影算法(Locality Preserving Projection,LPP)与K-近邻(K-Nearest Neighbor,KNN)分类器中,提出基于近邻概率距离的局部保持投影算法(Nearby Probability Distance Locality Preserving Projection,NPDLPP)与基于近邻概率距离的K-近邻(Nearby Probability Distance K-Nearest Neighbor,NPDKNN)分类器;首先通过时域、频域特征提取方法,将振动信号转化为高维特征数据集,然后通过NPDLPP将高维数据集降维到低维空间,最后将降维得到的低维敏感特征集输入到NPDKNN中进行模式识别;用一个双跨度转子系统的振动信号集合进行验证,证明了所提出的降维算法效果明显,它能够达到各个故障类型更好分离。研究表明,新提出的近邻概率距离较传统的欧式距离测度更能最小化类内散度,最大化类间分离度。 展开更多
关键词 局部保持投影 近邻概率距离 K近邻分类器 距离度量
在线阅读 下载PDF
基于标准正交判别投影的转子故障数据集降维方法 被引量:5
6
作者 石明宽 赵荣珍 《振动与冲击》 EI CSCD 北大核心 2020年第18期96-102,共7页
针对旋转机械智能决策技术的故障数据分类问题,提出一种基于标准正交判别投影(SODP)的转子故障数据集降维算法。该方法从时域、频域及时频域构造原始故障特征集,将振动信号转化为高维特征数据集;运用SODP选择出其中最能反映故障本质的... 针对旋转机械智能决策技术的故障数据分类问题,提出一种基于标准正交判别投影(SODP)的转子故障数据集降维算法。该方法从时域、频域及时频域构造原始故障特征集,将振动信号转化为高维特征数据集;运用SODP选择出其中最能反映故障本质的敏感特征子集;将得到的低维特征子集输入到KNN分类器中进行故障模式辨识。用一个双跨度转子系统的振动信号集合进行验证,证明了该方法能够有效地提取出全局与局部判别信息,使故障类别之间的差异性变得更清晰,相应地提高了故障模式识别准确率。研究表明该算法可为实际转子智能故障诊断提供参考。 展开更多
关键词 故障分类 转子故障数据集 正交判别投影 标准正交性约束 K近邻(knn)分类器
在线阅读 下载PDF
Effect of the target positions on the rapid identification of aluminum alloys by using filament-induced breakdown spectroscopy combined with machine learning 被引量:1
7
作者 Xiaoguang Li Xuetong Lu +3 位作者 Yong Zhang Shaozhong Song Zuoqiang Hao Xun Gao 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第5期379-385,共7页
Filament-induced breakdown spectroscopy(FIBS)combined with machine learning algorithms was used to identify five aluminum alloys.To study the effect of the distance between focusing lens and target surface on the iden... Filament-induced breakdown spectroscopy(FIBS)combined with machine learning algorithms was used to identify five aluminum alloys.To study the effect of the distance between focusing lens and target surface on the identification accuracy of aluminum alloys,principal component analysis(PCA)combined with support vector machine(SVM)and Knearest neighbor(KNN)was used.The intensity and intensity ratio of fifteen lines of six elements(Fe,Si,Mg,Cu,Zn,and Mn)in the FIBS spectrum were selected.The distances between the focusing lens and the target surface in the pre-filament,filament,and post-filament were 958 mm,976 mm,and 1000 mm,respectively.The source data set was fifteen spectral line intensity ratios,and the cumulative interpretation rates of PC1,PC2,and PC3 were 97.22%,98.17%,and 95.31%,respectively.The first three PCs obtained by PCA were the input variables of SVM and KNN.The identification accuracy of the different positions of focusing lens and target surface was obtained,and the identification accuracy of SVM and KNN in the filament was 100%and 90%,respectively.The source data set of the filament was obtained by PCA for the first three PCs,which were randomly selected as the training set and test set of SVM and KNN in 3:2.The identification accuracy of SVM and KNN was 97.5%and 92.5%,respectively.The research results can provide a reference for the identification of aluminum alloys by FIBS. 展开更多
关键词 filament-induced breakdown spectroscopy(FIBS) principal component analysis(PCA) support vector machine(SVM) k-nearest neighbor(knn) aluminum alloys identification
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部