期刊文献+
共找到2,853篇文章
< 1 2 143 >
每页显示 20 50 100
Investigation of the J-TEXT plasma events by k-means clustering algorithm 被引量:1
1
作者 李建超 张晓卿 +11 位作者 张昱 Abba Alhaji BALA 柳惠平 周帼红 王能超 李达 陈忠勇 杨州军 陈志鹏 董蛟龙 丁永华 the J-TEXT Team 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第8期38-43,共6页
Various types of plasma events emerge in specific parameter ranges and exhibit similar characteristics in diagnostic signals,which can be applied to identify these events.A semisupervised machine learning algorithm,th... Various types of plasma events emerge in specific parameter ranges and exhibit similar characteristics in diagnostic signals,which can be applied to identify these events.A semisupervised machine learning algorithm,the k-means clustering algorithm,is utilized to investigate and identify plasma events in the J-TEXT plasma.This method can cluster diverse plasma events with homogeneous features,and then these events can be identified if given few manually labeled examples based on physical understanding.A survey of clustered events reveals that the k-means algorithm can make plasma events(rotating tearing mode,sawtooth oscillations,and locked mode)gathering in Euclidean space composed of multi-dimensional diagnostic data,like soft x-ray emission intensity,edge toroidal rotation velocity,the Mirnov signal amplitude and so on.Based on the cluster analysis results,an approximate analytical model is proposed to rapidly identify plasma events in the J-TEXT plasma.The cluster analysis method is conducive to data markers of massive diagnostic data. 展开更多
关键词 k-means cluster analysis plasma event machine learning
在线阅读 下载PDF
Energy Efficient Clustering and Sink Mobility Protocol Using Hybrid Golden Jackal and Improved Whale Optimization Algorithm for Improving Network Longevity in WSNs
2
作者 S B Lenin R Sugumar +2 位作者 J S Adeline Johnsana N Tamilarasan R Nathiya 《China Communications》 2025年第3期16-35,共20页
Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability... Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches. 展开更多
关键词 cluster Heads(CHs) Golden Jackal Optimization algorithm(GJOA) Improved Whale Optimization algorithm(IWOA) unequal clustering
在线阅读 下载PDF
Method of Modulation Recognition Based on Combination Algorithm of K-Means Clustering and Grading Training SVM 被引量:10
3
作者 Faquan Yang Ling Yang +3 位作者 Dong Wang Peihan Qi Haiyan Wang 《China Communications》 SCIE CSCD 2018年第12期55-63,共9页
For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the s... For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the signal is extracted and optimized by using a clustering algorithm, support vector machine is trained by grading algorithm so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram in this paper. Simulation results show that the average recognition rate based on this algorithm is enhanced over 30% compared with methods that adopting clustering algorithm or support vector machine respectively under the low SNR. The average recognition rate can reach 90% when the SNR is 5 dB, and the method is easy to be achieved so that it has broad application prospect in the modulating recognition. 展开更多
关键词 clustering algorithm FEATURE extraction GRADING algorithm support VECTOR machine MODULATION recognition
在线阅读 下载PDF
Development of slope mass rating system using K-means and fuzzy c-means clustering algorithms 被引量:1
4
作者 Jalali Zakaria 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期959-966,共8页
Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experien... Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions. 展开更多
关键词 SMR based on continuous functions Slope stability analysis k-means and FCM clustering algorithms Validation of clustering algorithms Sangan iron ore mines
在线阅读 下载PDF
Similarity matrix-based K-means algorithm for text clustering
5
作者 曹奇敏 郭巧 吴向华 《Journal of Beijing Institute of Technology》 EI CAS 2015年第4期566-572,共7页
K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper propo... K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper proposes an improved K-means algorithm based on the similarity matrix. The im- proved algorithm can effectively avoid the random selection of initial center points, therefore it can provide effective initial points for clustering process, and reduce the fluctuation of clustering results which are resulted from initial points selections, thus a better clustering quality can be obtained. The experimental results also show that the F-measure of the improved K-means algorithm has been greatly improved and the clustering results are more stable. 展开更多
关键词 text clustering k-means algorithm similarity matrix F-MEASURE
在线阅读 下载PDF
An Improved K-Means Algorithm Based on Initial Clustering Center Optimization
6
作者 LI Taihao NAREN Tuya +2 位作者 ZHOU Jianshe REN Fuji LIU Shupeng 《ZTE Communications》 2017年第B12期43-46,共4页
The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the ... The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the fluctuations and instability of the clustering results are strongly affected by the initial clustering center.This paper proposed an algorithm to select the initial clustering center to eliminate the uncertainty of central point selection.The experiment results show that the improved K-means clustering algorithm is superior to the traditional algorithm. 展开更多
关键词 clustering k-means algorithm initial clustering center
在线阅读 下载PDF
Power forecasting method of ultra-short-term wind power cluster based on the convergence cross mapping algorithm
7
作者 Yuzhe Yang Weiye Song +5 位作者 Shuang Han Jie Yan Han Wang Qiangsheng Dai Xuesong Huo Yongqian Liu 《Global Energy Interconnection》 2025年第1期28-42,共15页
The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward... The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward-looking information of key wind farms in a cluster under different weather conditions is an effective method to improve the accuracy of ultrashort-term cluster power forecasting.To this end,this paper proposes a refined modeling method for ultrashort-term wind power cluster forecasting based on a convergent cross-mapping algorithm.From the perspective of causality,key meteorological forecasting factors under different cluster power fluctuation processes were screened,and refined training modeling was performed for different fluctuation processes.First,a wind process description index system and classification model at the wind power cluster level are established to realize the classification of typical fluctuation processes.A meteorological-cluster power causal relationship evaluation model based on the convergent cross-mapping algorithm is pro-posed to screen meteorological forecasting factors under multiple types of typical fluctuation processes.Finally,a refined modeling meth-od for a variety of different typical fluctuation processes is proposed,and the strong causal meteorological forecasting factors of each scenario are used as inputs to realize high-precision modeling and forecasting of ultra-short-term wind cluster power.An example anal-ysis shows that the short-term wind power cluster power forecasting accuracy of the proposed method can reach 88.55%,which is 1.57-7.32%higher than that of traditional methods. 展开更多
关键词 Ultra-short-term wind power forecasting Wind power cluster Causality analysis Convergence cross mapping algorithm
在线阅读 下载PDF
Hybrid Seagull and Whale Optimization Algorithm-Based Dynamic Clustering Protocol for Improving Network Longevity in Wireless Sensor Networks
8
作者 P.Vinoth Kumar K.Venkatesh 《China Communications》 SCIE CSCD 2024年第10期113-131,共19页
Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach ess... Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach essential for minimizing unnecessary transmission energy consumption with sustained network lifetime. This clustering process is identified as the Non-deterministic Polynomial(NP)-hard optimization problems which has the maximized probability of being solved through metaheuristic algorithms.This adoption of hybrid metaheuristic algorithm concentrates on the identification of the optimal or nearoptimal solutions which aids in better energy stability during Cluster Head(CH) selection. In this paper,Hybrid Seagull and Whale Optimization Algorithmbased Dynamic Clustering Protocol(HSWOA-DCP)is proposed with the exploitation benefits of WOA and exploration merits of SEOA to optimal CH selection for maintaining energy stability with prolonged network lifetime. This HSWOA-DCP adopted the modified version of SEagull Optimization Algorithm(SEOA) to handle the problem of premature convergence and computational accuracy which is maximally possible during CH selection. The inclusion of SEOA into WOA improved the global searching capability during the selection of CH and prevents worst fitness nodes from being selected as CH, since the spiral attacking behavior of SEOA is similar to the bubble-net characteristics of WOA. This CH selection integrates the spiral attacking principles of SEOA and contraction surrounding mechanism of WOA for improving computation accuracy to prevent frequent election process. It also included the strategy of levy flight strategy into SEOA for potentially avoiding premature convergence to attain better trade-off between the rate of exploration and exploitation in a more effective manner. The simulation results of the proposed HSWOADCP confirmed better network survivability rate, network residual energy and network overall throughput on par with the competitive CH selection schemes under different number of data transmission rounds.The statistical analysis of the proposed HSWOA-DCP scheme also confirmed its energy stability with respect to ANOVA test. 展开更多
关键词 clustering energy stability network lifetime seagull optimization algorithm(SEOA) whale optimization algorithm(WOA) wireless sensor networks(WSNs)
在线阅读 下载PDF
Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm-Based Clustering Scheme for Augmenting Network Lifetime in WSNs
9
作者 N Tamilarasan SB Lenin +1 位作者 P Mukunthan NC Sendhilkumar 《China Communications》 SCIE CSCD 2024年第9期159-178,共20页
In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending netw... In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches. 展开更多
关键词 Adaptive Grasshopper Optimization algorithm(AGOA) cluster Head(CH) network lifetime Teaching-Learning-based Optimization algorithm(TLOA) Wireless Sensor Networks(WSNs)
在线阅读 下载PDF
基于异构大数据平台的并行化K-means算法设计与实现
10
作者 张适显 黄万兵 熊文 《无线互联科技》 2025年第4期88-91,119,共5页
K-means算法是数据挖掘和机器学习中用于聚类分析的基础工具,广泛应用于文档聚类、异常值检测等多个领域。然而,随着大数据时代的来临,传统方法难以满足大规模数据聚类分析的处理需求。为此,文章基于Spark和GPU构建异构大数据平台,对K-m... K-means算法是数据挖掘和机器学习中用于聚类分析的基础工具,广泛应用于文档聚类、异常值检测等多个领域。然而,随着大数据时代的来临,传统方法难以满足大规模数据聚类分析的处理需求。为此,文章基于Spark和GPU构建异构大数据平台,对K-means算法进行并行化设计与实现,以提高K-means算法的数据处理效率和资源利用率。文章在4个公开的真实数据集上验证了该方法的有效性,与传统的并行化K-means方法进行对比,实验结果证明该方法相较传统方法具备更好的性能。 展开更多
关键词 并行计算 异构计算 大数据技术 数据挖掘 k-means算法 聚类分析
在线阅读 下载PDF
Statistical prediction of waterflooding performance by K-means clustering and empirical modeling 被引量:1
11
作者 Qin-Zhuo Liao Liang Xue +3 位作者 Gang Lei Xu Liu Shu-Yu Sun Shirish Patil 《Petroleum Science》 SCIE CAS CSCD 2022年第3期1139-1152,共14页
Statistical prediction is often required in reservoir simulation to quantify production uncertainty or assess potential risks.Most existing uncertainty quantification procedures aim to decompose the input random field... Statistical prediction is often required in reservoir simulation to quantify production uncertainty or assess potential risks.Most existing uncertainty quantification procedures aim to decompose the input random field to independent random variables,and may suffer from the curse of dimensionality if the correlation scale is small compared to the domain size.In this work,we develop and test a new approach,K-means clustering assisted empirical modeling,for efficiently estimating waterflooding performance for multiple geological realizations.This method performs single-phase flow simulations in a large number of realizations,and uses K-means clustering to select only a few representatives,on which the two-phase flow simulations are implemented.The empirical models are then adopted to describe the relation between the single-phase solutions and the two-phase solutions using these representatives.Finally,the two-phase solutions in all realizations can be predicted using the empirical models readily.The method is applied to both 2D and 3D synthetic models and is shown to perform well in the P10,P50 and P90 of production rates,as well as the probability distributions as illustrated by cumulative density functions.It is able to capture the ensemble statistics of the Monte Carlo simulation results with a large number of realizations,and the computational cost is significantly reduced. 展开更多
关键词 WATERFLOODING Statistical prediction k-means clustering Empirical modeling Uncertainty quantification
在线阅读 下载PDF
启发式k-means聚类算法的改进研究 被引量:2
12
作者 殷丽凤 栗庆杰 《大连交通大学学报》 CAS 2024年第2期115-119,共5页
启发式k-means聚类算法通过在k-means第一次迭代后查看附近的集群来预测每个数据点可能会被划分到的集群子集,有效地加快了算法的运行速度。但由于启发式算法存在随机选择初始聚类中心以及无法有效识别数据集中离群点的缺陷,导致聚类结... 启发式k-means聚类算法通过在k-means第一次迭代后查看附近的集群来预测每个数据点可能会被划分到的集群子集,有效地加快了算法的运行速度。但由于启发式算法存在随机选择初始聚类中心以及无法有效识别数据集中离群点的缺陷,导致聚类结果的误差平方和较大并且轮廓系数偏小。针对这一问题,提出了CHk-means算法,该算法引入仔细播种方法,克服了启发式k-means算法随机选择初始聚类中心带来的局部最优解问题;该算法引入局部异常因子LOF算法对离群点进行检测,降低了离群点数据对聚类结果的影响。在多个数据集上对3种算法进行对比试验,结果表明CHk-means算法可有效降低聚类结果的误差平方和,增强聚类的轮廓系数,使聚类质量得到明显改善。 展开更多
关键词 聚类算法 k-means 启发式算法 仔细播种 局部异常因子 离群点
在线阅读 下载PDF
基于改进K-means聚类和遗传算法的混合算法求解异构车辆路径问题
13
作者 吴麟麟 吕一鸣 +1 位作者 何美玲 韩珣 《物流技术》 2024年第7期48-62,共15页
由于目前单一车型配送存在资源浪费和效率低下等问题,选取确定数量的不同车型对各客户点进行配送服务往往可以得到更优的配送路径方案。针对这一点,描述了一种异构车辆路径问题,并建立了具有固定车辆数且考虑固定成本、可变成本以及时... 由于目前单一车型配送存在资源浪费和效率低下等问题,选取确定数量的不同车型对各客户点进行配送服务往往可以得到更优的配送路径方案。针对这一点,描述了一种异构车辆路径问题,并建立了具有固定车辆数且考虑固定成本、可变成本以及时间窗惩罚成本的混合整数规划模型。同时,提出了一种基于改进K-means聚类和遗传算法的混合算法对模型进行求解。实验仿真先求解不考虑时间窗的问题初步证明混合算法的有效性,再在带时间窗的问题中求解不同规模算例的单一及异构车型结果,以证明异构车型配送更优。最后,对该混合算法的求解结果与其他混合算法的求解结果进行对比分析,证明了混合算法的优越性。研究结果表明:该混合算法求解的异构车型结果优于单一车型,并且比其他混合算法求解的异构车型结果更优,异构车辆配送使用的配送车辆数更少,总成本也更低,该混合算法具有更好的效率和性能。 展开更多
关键词 异构车辆路径问题 改进k-means聚类算法 遗传算法 混合算法
在线阅读 下载PDF
一种基于改进差分进化的K-Means聚类算法研究 被引量:2
14
作者 刘红达 王福顺 +3 位作者 孙小华 张广辉 王斌 何振学 《现代电子技术》 北大核心 2024年第18期156-162,共7页
为改进传统K-Means聚类算法中因随机选取初始聚类中心而导致聚类结果不稳定且效率低的缺点,提出一种基于改进差分进化的K-Means聚类算法(AGDE-KM)。首先,设计自适应操作算子来提升算法前期的全局搜索能力和后期的收敛速度;其次,设计多... 为改进传统K-Means聚类算法中因随机选取初始聚类中心而导致聚类结果不稳定且效率低的缺点,提出一种基于改进差分进化的K-Means聚类算法(AGDE-KM)。首先,设计自适应操作算子来提升算法前期的全局搜索能力和后期的收敛速度;其次,设计多变异策略并引入权重系数,在算法的不同进化阶段发挥不同变异策略的优势,平衡算法的全局和局部搜索能力,加快算法的收敛速度;最后,提出一种基于当前种群最佳个体的高斯扰动交叉操作,为个体提供更优进化方向的同时保持种群在“维”上的多样性,避免算法陷入局部最优。将算法停止执行时输出的最优解作为初始聚类中心替代传统K-Means随机选取的聚类中心。将提出算法在UCI公共数据库中的Vowel、Iris、Glass数据集和合成数据集Jcdx上进行对比实验,误差平方和(SSE)相对于传统K-Means分别减小5.65%、19.59%、13.31%、6.1%,聚类时间分别减少83.03%、81.33%、77.47%、92.63%。实验结果表明,提出的改进算法具有更快的收敛速度和更好的寻优能力,显著提升了聚类的效果、效率和稳定性。 展开更多
关键词 k-means聚类算法 差分进化算法 多变异策略 高斯扰动 UCI数据库 聚类中心优化
在线阅读 下载PDF
基于改进K-means聚类算法的网络异常数据挖掘与分类方法
15
作者 贺萌 《无线互联科技》 2024年第18期119-122,共4页
为了解决网络异常数据挖掘过程中漏报率、误报率较高的问题,文章提出一种基于改进K-means聚类算法的网络异常数据挖掘与分类方法。文章通过构建并行化频繁项集挖掘环境加速数据处理,利用局部离群点检测剔除异常值,同时引入K-means聚类... 为了解决网络异常数据挖掘过程中漏报率、误报率较高的问题,文章提出一种基于改进K-means聚类算法的网络异常数据挖掘与分类方法。文章通过构建并行化频繁项集挖掘环境加速数据处理,利用局部离群点检测剔除异常值,同时引入K-means聚类对数据的最大最小距离展开计算,融合隶属度函数与密度峰值优化算法,改进聚类初始中心选择及簇边界调整,从而提高异常识别准确性和分类效率。通过实验结果证明,该方法能够明显改善聚类效果与性能。 展开更多
关键词 k-means聚类算法 网络异常 数据挖掘 数据分类 离群点检测
在线阅读 下载PDF
Spark框架下支持差分隐私保护的K-means++聚类方法 被引量:2
16
作者 石江南 彭长根 谭伟杰 《信息安全研究》 CSCD 北大核心 2024年第8期712-718,共7页
针对差分隐私聚类算法在处理海量数据时其隐私性和可用性之间的矛盾,提出了一种分布式环境下支持差分隐私的K-means++聚类算法.该算法通过内存计算引擎Spark,创建弹性分布式数据集,利用转换算子及行动算子操作数据进行运算,并在选取初... 针对差分隐私聚类算法在处理海量数据时其隐私性和可用性之间的矛盾,提出了一种分布式环境下支持差分隐私的K-means++聚类算法.该算法通过内存计算引擎Spark,创建弹性分布式数据集,利用转换算子及行动算子操作数据进行运算,并在选取初始化中心点及迭代更新中心点的过程中,通过综合利用指数机制和拉普拉斯机制,以解决初始聚类中心敏感及隐私泄露问题,同时减少计算过程中对数据实施的扰动.根据差分隐私的特性,从理论角度对整个算法进行证明,以满足ε-差分隐私保护.实验结果证明了该方法在确保聚类结果可用性的前提下,具备出色的隐私保护能力和高效的运行效率. 展开更多
关键词 数据挖掘 聚类算法 差分隐私 Spark框架 指数机制
在线阅读 下载PDF
基于改进的Canopy-k-means的大跨屋盖表面风荷载分区方法 被引量:1
17
作者 李玉学 纪君 董阳 《河北科技大学学报》 CAS 北大核心 2024年第5期530-538,共9页
针对k-means聚类算法在大跨屋盖结构表面风荷载分区计算中,聚类数k值随机选取容易导致结果不稳定和计算效率低等问题,提出改进的Canopy-k-means聚类算法。首先,引入Canopy算法并对其初始阈值和聚类中心的选取方式进行改进,减少初始值选... 针对k-means聚类算法在大跨屋盖结构表面风荷载分区计算中,聚类数k值随机选取容易导致结果不稳定和计算效率低等问题,提出改进的Canopy-k-means聚类算法。首先,引入Canopy算法并对其初始阈值和聚类中心的选取方式进行改进,减少初始值选取的盲目性,以提高风荷载分区结果的可靠性;其次,通过改进Canopy算法对风荷载数据集进行预处理,快速准确地确定聚类数k值;第三,将改进Canopy算法与k-means结合使用,实现最优分类数k值的精准识别,使得改进的Canopy-k-means聚类算法进行大跨屋盖结构表面风荷载分区时能够快速准确地得到分区结果;最后,以一大跨柱面屋盖干煤棚结构为例,基于风洞试验所得结构表面风荷载数据测试结果,采用所提改进的Canopy-k-means聚类算法对其表面风荷载进行分区计算。结果表明,采用改进的Canopy-k-means聚类算法,将0°、50°和90°风向角时大跨屋盖表面风荷载划分为了3个不同的分区,其对应的SD值分别为2.36、3.51和2.52,较传统k-means聚类算法所得对应值明显降低,类内紧凑性和类间分散性明显提升。所提改进Canopy-k-means聚类算法能够快速准确地得到最优分区结果,对大跨屋盖表面风荷载分区具有工程参考价值。 展开更多
关键词 薄壳结构 风荷载测压 风荷载分区 k-means聚类算法 Canopy算法
在线阅读 下载PDF
基于K-means聚类算法的人事管理异常数据识别和自动处理系统 被引量:1
18
作者 韩晓萃 胡业维 +2 位作者 吴庆艳 胡敏 曾思颖 《电子设计工程》 2024年第24期27-31,共5页
针对人事管理异常数据影响人事管理水平的问题,设计基于K-means聚类算法的人事管理异常数据识别和自动处理系统。利用全局优化K-means聚类算法,对人事管理数据进行聚类处理。该算法搜寻高密度的人事管理数据作为初始聚类中心,将人事管... 针对人事管理异常数据影响人事管理水平的问题,设计基于K-means聚类算法的人事管理异常数据识别和自动处理系统。利用全局优化K-means聚类算法,对人事管理数据进行聚类处理。该算法搜寻高密度的人事管理数据作为初始聚类中心,将人事管理数据聚类为多个簇。利用K-means聚类算法构建人事管理数据的自回归模型,确定人事管理数据参量的转移概率序列。转移概率序列非聚类簇中的数据时,对应数据即为人事管理异常数据识别结果。采用指数加权移动平均数方法自动修正处理所识别的人事管理异常数据。系统测试结果表明,所设计系统能够有效识别人事管理考勤数据、薪资数据中的异常数据,能够自动修正异常数据,使人事管理数据恢复正常。 展开更多
关键词 k-means聚类算法 人事管理 异常数据识别 自动处理系统 聚类中心 转移概率
在线阅读 下载PDF
Optimization of jamming formation of USV offboard active decoy clusters based on an improved PSO algorithm 被引量:1
19
作者 Zhaodong Wu Yasong Luo Shengliang Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期529-540,共12页
Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for t... Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources. 展开更多
关键词 Electronic countermeasure Offboard active decoy USV cluster Jamming formation optimization Improved PSO algorithm
在线阅读 下载PDF
基于K-means聚类和极限学习机组合算法的短期光伏功率预测 被引量:5
20
作者 黄牧涛 邢芳菲 +1 位作者 陈兴邦 卢明 《水电能源科学》 北大核心 2024年第2期217-220,216,共5页
考虑光伏功率的预测精度强依赖于天气模态和气候条件等因素影响,提出了基于极限学习机组合算法的短期光伏功率预测方法。首先,基于K-means聚类算法进行天气分型,分为4个季节下晴天、多云天气、阴雨天气共12组不同天气类别。其次,针对天... 考虑光伏功率的预测精度强依赖于天气模态和气候条件等因素影响,提出了基于极限学习机组合算法的短期光伏功率预测方法。首先,基于K-means聚类算法进行天气分型,分为4个季节下晴天、多云天气、阴雨天气共12组不同天气类别。其次,针对天气分型结果,基于极限学习机ELM、遗传算法改进的极限学习机GA-ELM、鸟群算法改进的极限学习机BSA-ELM3种算法构建光伏功率预测模型。最后,以某光伏电站数据进行所提模型验证。预测结果表明,BSA-ELM预测精度最高,12种天气预测精度达到90%左右,各季节中预测精度最高的天气类型均为晴天,多云天气精度高于阴雨天气精度,可为含高比例光伏并网的新型电力系统安全稳定运行提供有效数据支撑。 展开更多
关键词 光伏发电功率预测 k-means聚类 天气分型 极限学习机算法 遗传算法 鸟群算法
在线阅读 下载PDF
上一页 1 2 143 下一页 到第
使用帮助 返回顶部