Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability...Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches.展开更多
The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward...The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward-looking information of key wind farms in a cluster under different weather conditions is an effective method to improve the accuracy of ultrashort-term cluster power forecasting.To this end,this paper proposes a refined modeling method for ultrashort-term wind power cluster forecasting based on a convergent cross-mapping algorithm.From the perspective of causality,key meteorological forecasting factors under different cluster power fluctuation processes were screened,and refined training modeling was performed for different fluctuation processes.First,a wind process description index system and classification model at the wind power cluster level are established to realize the classification of typical fluctuation processes.A meteorological-cluster power causal relationship evaluation model based on the convergent cross-mapping algorithm is pro-posed to screen meteorological forecasting factors under multiple types of typical fluctuation processes.Finally,a refined modeling meth-od for a variety of different typical fluctuation processes is proposed,and the strong causal meteorological forecasting factors of each scenario are used as inputs to realize high-precision modeling and forecasting of ultra-short-term wind cluster power.An example anal-ysis shows that the short-term wind power cluster power forecasting accuracy of the proposed method can reach 88.55%,which is 1.57-7.32%higher than that of traditional methods.展开更多
Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach ess...Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach essential for minimizing unnecessary transmission energy consumption with sustained network lifetime. This clustering process is identified as the Non-deterministic Polynomial(NP)-hard optimization problems which has the maximized probability of being solved through metaheuristic algorithms.This adoption of hybrid metaheuristic algorithm concentrates on the identification of the optimal or nearoptimal solutions which aids in better energy stability during Cluster Head(CH) selection. In this paper,Hybrid Seagull and Whale Optimization Algorithmbased Dynamic Clustering Protocol(HSWOA-DCP)is proposed with the exploitation benefits of WOA and exploration merits of SEOA to optimal CH selection for maintaining energy stability with prolonged network lifetime. This HSWOA-DCP adopted the modified version of SEagull Optimization Algorithm(SEOA) to handle the problem of premature convergence and computational accuracy which is maximally possible during CH selection. The inclusion of SEOA into WOA improved the global searching capability during the selection of CH and prevents worst fitness nodes from being selected as CH, since the spiral attacking behavior of SEOA is similar to the bubble-net characteristics of WOA. This CH selection integrates the spiral attacking principles of SEOA and contraction surrounding mechanism of WOA for improving computation accuracy to prevent frequent election process. It also included the strategy of levy flight strategy into SEOA for potentially avoiding premature convergence to attain better trade-off between the rate of exploration and exploitation in a more effective manner. The simulation results of the proposed HSWOADCP confirmed better network survivability rate, network residual energy and network overall throughput on par with the competitive CH selection schemes under different number of data transmission rounds.The statistical analysis of the proposed HSWOA-DCP scheme also confirmed its energy stability with respect to ANOVA test.展开更多
In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending netw...In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches.展开更多
For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the s...For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the signal is extracted and optimized by using a clustering algorithm, support vector machine is trained by grading algorithm so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram in this paper. Simulation results show that the average recognition rate based on this algorithm is enhanced over 30% compared with methods that adopting clustering algorithm or support vector machine respectively under the low SNR. The average recognition rate can reach 90% when the SNR is 5 dB, and the method is easy to be achieved so that it has broad application prospect in the modulating recognition.展开更多
Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experien...Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.展开更多
Various types of plasma events emerge in specific parameter ranges and exhibit similar characteristics in diagnostic signals,which can be applied to identify these events.A semisupervised machine learning algorithm,th...Various types of plasma events emerge in specific parameter ranges and exhibit similar characteristics in diagnostic signals,which can be applied to identify these events.A semisupervised machine learning algorithm,the k-means clustering algorithm,is utilized to investigate and identify plasma events in the J-TEXT plasma.This method can cluster diverse plasma events with homogeneous features,and then these events can be identified if given few manually labeled examples based on physical understanding.A survey of clustered events reveals that the k-means algorithm can make plasma events(rotating tearing mode,sawtooth oscillations,and locked mode)gathering in Euclidean space composed of multi-dimensional diagnostic data,like soft x-ray emission intensity,edge toroidal rotation velocity,the Mirnov signal amplitude and so on.Based on the cluster analysis results,an approximate analytical model is proposed to rapidly identify plasma events in the J-TEXT plasma.The cluster analysis method is conducive to data markers of massive diagnostic data.展开更多
K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper propo...K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper proposes an improved K-means algorithm based on the similarity matrix. The im- proved algorithm can effectively avoid the random selection of initial center points, therefore it can provide effective initial points for clustering process, and reduce the fluctuation of clustering results which are resulted from initial points selections, thus a better clustering quality can be obtained. The experimental results also show that the F-measure of the improved K-means algorithm has been greatly improved and the clustering results are more stable.展开更多
The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the ...The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the fluctuations and instability of the clustering results are strongly affected by the initial clustering center.This paper proposed an algorithm to select the initial clustering center to eliminate the uncertainty of central point selection.The experiment results show that the improved K-means clustering algorithm is superior to the traditional algorithm.展开更多
Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for t...Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources.展开更多
To quantify unmanned aerial vehicle(UAV)flight risks in low-altitude airspace,we analyze the factors of UAV flight risks from three aspects:flight conflict,flight environment,and traffic characteristics.The aerial ris...To quantify unmanned aerial vehicle(UAV)flight risks in low-altitude airspace,we analyze the factors of UAV flight risks from three aspects:flight conflict,flight environment,and traffic characteristics.The aerial risk index and ground risk index of the UAV are constructed,the index screening model and the UAV flight risk assessment model are established,and a UAV flight risk assessment model based on K-means clustering has been proposed.Meanwhile,numerical simulations show the proposed method can not only evaluate the UAV flight risks effectively,but also provide technical support for UAV risk management and control.展开更多
A quick and accurate extraction of dominant colors of background images is the basis of adaptive camouflage design.This paper proposes a Color Image Quick Fuzzy C-Means(CIQFCM)clustering algorithm based on clustering ...A quick and accurate extraction of dominant colors of background images is the basis of adaptive camouflage design.This paper proposes a Color Image Quick Fuzzy C-Means(CIQFCM)clustering algorithm based on clustering spatial mapping.First,the clustering sample space was mapped from the image pixels to the quantized color space,and several methods were adopted to compress the amount of clustering samples.Then,an improved pedigree clustering algorithm was applied to obtain the initial class centers.Finally,CIQFCM clustering algorithm was used for quick extraction of dominant colors of background image.After theoretical analysis of the effect and efficiency of the CIQFCM algorithm,several experiments were carried out to discuss the selection of proper quantization intervals and to verify the effect and efficiency of the CIQFCM algorithm.The results indicated that the value of quantization intervals should be set to 4,and the proposed algorithm could improve the clustering efficiency while maintaining the clustering effect.In addition,as the image size increased from 128×128 to 1024×1024,the efficiency improvement of CIQFCM algorithm was increased from 6.44 times to 36.42 times,which demonstrated the significant advantage of CIQFCM algorithm in dominant colors extraction of large-size images.展开更多
Statistical prediction is often required in reservoir simulation to quantify production uncertainty or assess potential risks.Most existing uncertainty quantification procedures aim to decompose the input random field...Statistical prediction is often required in reservoir simulation to quantify production uncertainty or assess potential risks.Most existing uncertainty quantification procedures aim to decompose the input random field to independent random variables,and may suffer from the curse of dimensionality if the correlation scale is small compared to the domain size.In this work,we develop and test a new approach,K-means clustering assisted empirical modeling,for efficiently estimating waterflooding performance for multiple geological realizations.This method performs single-phase flow simulations in a large number of realizations,and uses K-means clustering to select only a few representatives,on which the two-phase flow simulations are implemented.The empirical models are then adopted to describe the relation between the single-phase solutions and the two-phase solutions using these representatives.Finally,the two-phase solutions in all realizations can be predicted using the empirical models readily.The method is applied to both 2D and 3D synthetic models and is shown to perform well in the P10,P50 and P90 of production rates,as well as the probability distributions as illustrated by cumulative density functions.It is able to capture the ensemble statistics of the Monte Carlo simulation results with a large number of realizations,and the computational cost is significantly reduced.展开更多
The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection an...The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection and its convergence to local optimal solutions.To overcome these limitations,an improved KFCM algorithm with adaptive optimal clustering number selection is proposed in this paper.This algorithm optimizes the KFCM algorithm by combining the powerful global search ability of genetic algorithm and the robust local search ability of simulated annealing algorithm.The improved KFCM algorithm adaptively determines the ideal number of clusters using the clustering evaluation index ratio.Compared with the traditional KFCM algorithm,the enhanced KFCM algorithm has robust clustering and comprehensive abilities,enabling the efficient convergence to the global optimal solution.展开更多
Chosen-message pair Simple Power Analysis (SPA) attacks were proposed by Boer, Yen and Homma, and are attack methods based on searches for collisions of modular multiplication. However, searching for collisions is dif...Chosen-message pair Simple Power Analysis (SPA) attacks were proposed by Boer, Yen and Homma, and are attack methods based on searches for collisions of modular multiplication. However, searching for collisions is difficult in real environments. To circumvent this problem, we propose the Simple Power Clustering Attack (SPCA), which can automatically identify the modular multiplication collision. The insignificant effects of collision attacks were validated in an Application Specific Integrated Circuit (ASIC) environment. After treatment with SPCA, the automatic secret key recognition rate increased to 99%.展开更多
Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical...Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical clustering were investigated. Both theoretical analysis and detailed experimental results were given. It is shown that a distance function greatly affects clustering results and can be used to detect the outlier of a cluster by the comparison of such different results and give the shape information of clusters. In practice situation, it is suggested to use different distance function separately, compare the clustering results and pick out the 搒wing points? And such points may leak out more information for data analysts.展开更多
Clustering is one of the most widely used data mining techniques that can be used to create homogeneous clusters.K-means is one of the popular clustering algorithms that,despite its inherent simplicity,has also some m...Clustering is one of the most widely used data mining techniques that can be used to create homogeneous clusters.K-means is one of the popular clustering algorithms that,despite its inherent simplicity,has also some major problems.One way to resolve these problems and improve the k-means algorithm is the use of evolutionary algorithms in clustering.In this study,the Imperialist Competitive Algorithm(ICA) is developed and then used in the clustering process.Clustering of IRIS,Wine and CMC datasets using developed ICA and comparing them with the results of clustering by the original ICA,GA and PSO algorithms,demonstrate the improvement of Imperialist competitive algorithm.展开更多
This paper presents a new Section Set Adaptive FCM algorithm.The algorithm solved the shortcomings of local optimality,unsure classification and clustering numbers ascertained previously.And it improved on the archite...This paper presents a new Section Set Adaptive FCM algorithm.The algorithm solved the shortcomings of local optimality,unsure classification and clustering numbers ascertained previously.And it improved on the architecture of FCM al- gorithm,enhanced the analysis for effective clustering.During the clustering processing,it may adjust clustering numbers dy- namically.Finally,it used the method of section set decreasing the time of classification.By experiments,the algorithm can im- prove dependability of clustering and correctness of classification.展开更多
文摘Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches.
基金funded by the State Grid Science and Technology Project“Research on Key Technologies for Prediction and Early Warning of Large-Scale Offshore Wind Power Ramp Events Based on Meteorological Data Enhancement”(4000-202318098A-1-1-ZN).
文摘The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward-looking information of key wind farms in a cluster under different weather conditions is an effective method to improve the accuracy of ultrashort-term cluster power forecasting.To this end,this paper proposes a refined modeling method for ultrashort-term wind power cluster forecasting based on a convergent cross-mapping algorithm.From the perspective of causality,key meteorological forecasting factors under different cluster power fluctuation processes were screened,and refined training modeling was performed for different fluctuation processes.First,a wind process description index system and classification model at the wind power cluster level are established to realize the classification of typical fluctuation processes.A meteorological-cluster power causal relationship evaluation model based on the convergent cross-mapping algorithm is pro-posed to screen meteorological forecasting factors under multiple types of typical fluctuation processes.Finally,a refined modeling meth-od for a variety of different typical fluctuation processes is proposed,and the strong causal meteorological forecasting factors of each scenario are used as inputs to realize high-precision modeling and forecasting of ultra-short-term wind cluster power.An example anal-ysis shows that the short-term wind power cluster power forecasting accuracy of the proposed method can reach 88.55%,which is 1.57-7.32%higher than that of traditional methods.
文摘Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach essential for minimizing unnecessary transmission energy consumption with sustained network lifetime. This clustering process is identified as the Non-deterministic Polynomial(NP)-hard optimization problems which has the maximized probability of being solved through metaheuristic algorithms.This adoption of hybrid metaheuristic algorithm concentrates on the identification of the optimal or nearoptimal solutions which aids in better energy stability during Cluster Head(CH) selection. In this paper,Hybrid Seagull and Whale Optimization Algorithmbased Dynamic Clustering Protocol(HSWOA-DCP)is proposed with the exploitation benefits of WOA and exploration merits of SEOA to optimal CH selection for maintaining energy stability with prolonged network lifetime. This HSWOA-DCP adopted the modified version of SEagull Optimization Algorithm(SEOA) to handle the problem of premature convergence and computational accuracy which is maximally possible during CH selection. The inclusion of SEOA into WOA improved the global searching capability during the selection of CH and prevents worst fitness nodes from being selected as CH, since the spiral attacking behavior of SEOA is similar to the bubble-net characteristics of WOA. This CH selection integrates the spiral attacking principles of SEOA and contraction surrounding mechanism of WOA for improving computation accuracy to prevent frequent election process. It also included the strategy of levy flight strategy into SEOA for potentially avoiding premature convergence to attain better trade-off between the rate of exploration and exploitation in a more effective manner. The simulation results of the proposed HSWOADCP confirmed better network survivability rate, network residual energy and network overall throughput on par with the competitive CH selection schemes under different number of data transmission rounds.The statistical analysis of the proposed HSWOA-DCP scheme also confirmed its energy stability with respect to ANOVA test.
文摘In Wireless Sensor Networks(WSNs),Clustering process is widely utilized for increasing the lifespan with sustained energy stability during data transmission.Several clustering protocols were devised for extending network lifetime,but most of them failed in handling the problem of fixed clustering,static rounds,and inadequate Cluster Head(CH)selection criteria which consumes more energy.In this paper,Stochastic Ranking Improved Teaching-Learning and Adaptive Grasshopper Optimization Algorithm(SRITL-AGOA)-based Clustering Scheme for energy stabilization and extending network lifespan.This SRITL-AGOA selected CH depending on the weightage of factors such as node mobility degree,neighbour's density distance to sink,single-hop or multihop communication and Residual Energy(RE)that directly influences the energy consumption of sensor nodes.In specific,Grasshopper Optimization Algorithm(GOA)is improved through tangent-based nonlinear strategy for enhancing the ability of global optimization.On the other hand,stochastic ranking and violation constraint handling strategies are embedded into Teaching-Learning-based Optimization Algorithm(TLOA)for improving its exploitation tendencies.Then,SR and VCH improved TLOA is embedded into the exploitation phase of AGOA for selecting better CH by maintaining better balance amid exploration and exploitation.Simulation results confirmed that the proposed SRITL-AGOA improved throughput by 21.86%,network stability by 18.94%,load balancing by 16.14%with minimized energy depletion by19.21%,compared to the competitive CH selection approaches.
基金supported in part by the National Natural Science Foundation of China under Grand No.61871129 and No.61301179Projects of Science and Technology Plan Guangdong Province under Grand No.2014A010101284
文摘For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the signal is extracted and optimized by using a clustering algorithm, support vector machine is trained by grading algorithm so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram in this paper. Simulation results show that the average recognition rate based on this algorithm is enhanced over 30% compared with methods that adopting clustering algorithm or support vector machine respectively under the low SNR. The average recognition rate can reach 90% when the SNR is 5 dB, and the method is easy to be achieved so that it has broad application prospect in the modulating recognition.
文摘Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2018YFE0301104 and 2018YFE0301100)National Natural Science Foundation of China(Nos.12075096 and 51821005)。
文摘Various types of plasma events emerge in specific parameter ranges and exhibit similar characteristics in diagnostic signals,which can be applied to identify these events.A semisupervised machine learning algorithm,the k-means clustering algorithm,is utilized to investigate and identify plasma events in the J-TEXT plasma.This method can cluster diverse plasma events with homogeneous features,and then these events can be identified if given few manually labeled examples based on physical understanding.A survey of clustered events reveals that the k-means algorithm can make plasma events(rotating tearing mode,sawtooth oscillations,and locked mode)gathering in Euclidean space composed of multi-dimensional diagnostic data,like soft x-ray emission intensity,edge toroidal rotation velocity,the Mirnov signal amplitude and so on.Based on the cluster analysis results,an approximate analytical model is proposed to rapidly identify plasma events in the J-TEXT plasma.The cluster analysis method is conducive to data markers of massive diagnostic data.
文摘K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper proposes an improved K-means algorithm based on the similarity matrix. The im- proved algorithm can effectively avoid the random selection of initial center points, therefore it can provide effective initial points for clustering process, and reduce the fluctuation of clustering results which are resulted from initial points selections, thus a better clustering quality can be obtained. The experimental results also show that the F-measure of the improved K-means algorithm has been greatly improved and the clustering results are more stable.
文摘The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the fluctuations and instability of the clustering results are strongly affected by the initial clustering center.This paper proposed an algorithm to select the initial clustering center to eliminate the uncertainty of central point selection.The experiment results show that the improved K-means clustering algorithm is superior to the traditional algorithm.
基金the National Natural Science Foundation of China(Grant No.62101579).
文摘Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources.
基金supported in part by the National Natural Science Foundation of China (Nos. 71971114,61573181)Open Grant of State Key Laboratory of Air Traffic Management System and Technique(No. SKLATM201801).
文摘To quantify unmanned aerial vehicle(UAV)flight risks in low-altitude airspace,we analyze the factors of UAV flight risks from three aspects:flight conflict,flight environment,and traffic characteristics.The aerial risk index and ground risk index of the UAV are constructed,the index screening model and the UAV flight risk assessment model are established,and a UAV flight risk assessment model based on K-means clustering has been proposed.Meanwhile,numerical simulations show the proposed method can not only evaluate the UAV flight risks effectively,but also provide technical support for UAV risk management and control.
文摘A quick and accurate extraction of dominant colors of background images is the basis of adaptive camouflage design.This paper proposes a Color Image Quick Fuzzy C-Means(CIQFCM)clustering algorithm based on clustering spatial mapping.First,the clustering sample space was mapped from the image pixels to the quantized color space,and several methods were adopted to compress the amount of clustering samples.Then,an improved pedigree clustering algorithm was applied to obtain the initial class centers.Finally,CIQFCM clustering algorithm was used for quick extraction of dominant colors of background image.After theoretical analysis of the effect and efficiency of the CIQFCM algorithm,several experiments were carried out to discuss the selection of proper quantization intervals and to verify the effect and efficiency of the CIQFCM algorithm.The results indicated that the value of quantization intervals should be set to 4,and the proposed algorithm could improve the clustering efficiency while maintaining the clustering effect.In addition,as the image size increased from 128×128 to 1024×1024,the efficiency improvement of CIQFCM algorithm was increased from 6.44 times to 36.42 times,which demonstrated the significant advantage of CIQFCM algorithm in dominant colors extraction of large-size images.
基金the funding supported by Beijing Natural Science Foundation(Grant No.3222037)the PetroChina Innovation Foundation(Grant No.2020D-5007-0203)by the Science Foundation of China University of Petroleum,Beijing(Nos.2462021YXZZ010,2462018QZDX13,and 2462020YXZZ028)
文摘Statistical prediction is often required in reservoir simulation to quantify production uncertainty or assess potential risks.Most existing uncertainty quantification procedures aim to decompose the input random field to independent random variables,and may suffer from the curse of dimensionality if the correlation scale is small compared to the domain size.In this work,we develop and test a new approach,K-means clustering assisted empirical modeling,for efficiently estimating waterflooding performance for multiple geological realizations.This method performs single-phase flow simulations in a large number of realizations,and uses K-means clustering to select only a few representatives,on which the two-phase flow simulations are implemented.The empirical models are then adopted to describe the relation between the single-phase solutions and the two-phase solutions using these representatives.Finally,the two-phase solutions in all realizations can be predicted using the empirical models readily.The method is applied to both 2D and 3D synthetic models and is shown to perform well in the P10,P50 and P90 of production rates,as well as the probability distributions as illustrated by cumulative density functions.It is able to capture the ensemble statistics of the Monte Carlo simulation results with a large number of realizations,and the computational cost is significantly reduced.
基金supported by the Planning Special Project of Guangdong Power Grid Co.,Ltd.:“Study on load modeling based on total measurement and discrimination method suitable for system characteristic analysis and calculation during the implementation of target grid in Guangdong power grid”(0319002022030203JF00023).
文摘The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection and its convergence to local optimal solutions.To overcome these limitations,an improved KFCM algorithm with adaptive optimal clustering number selection is proposed in this paper.This algorithm optimizes the KFCM algorithm by combining the powerful global search ability of genetic algorithm and the robust local search ability of simulated annealing algorithm.The improved KFCM algorithm adaptively determines the ideal number of clusters using the clustering evaluation index ratio.Compared with the traditional KFCM algorithm,the enhanced KFCM algorithm has robust clustering and comprehensive abilities,enabling the efficient convergence to the global optimal solution.
基金supported in part by the National Natural Science Foundation of China under Grant No. 60873216Scientific and Technological Research Priority Projects of Sichuan Province under Grant No. 2012GZ0017Basic Research of Application Fund Project of Sichuan Province under Grant No. 2011JY0100
文摘Chosen-message pair Simple Power Analysis (SPA) attacks were proposed by Boer, Yen and Homma, and are attack methods based on searches for collisions of modular multiplication. However, searching for collisions is difficult in real environments. To circumvent this problem, we propose the Simple Power Clustering Attack (SPCA), which can automatically identify the modular multiplication collision. The insignificant effects of collision attacks were validated in an Application Specific Integrated Circuit (ASIC) environment. After treatment with SPCA, the automatic secret key recognition rate increased to 99%.
文摘Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical clustering were investigated. Both theoretical analysis and detailed experimental results were given. It is shown that a distance function greatly affects clustering results and can be used to detect the outlier of a cluster by the comparison of such different results and give the shape information of clusters. In practice situation, it is suggested to use different distance function separately, compare the clustering results and pick out the 搒wing points? And such points may leak out more information for data analysts.
文摘Clustering is one of the most widely used data mining techniques that can be used to create homogeneous clusters.K-means is one of the popular clustering algorithms that,despite its inherent simplicity,has also some major problems.One way to resolve these problems and improve the k-means algorithm is the use of evolutionary algorithms in clustering.In this study,the Imperialist Competitive Algorithm(ICA) is developed and then used in the clustering process.Clustering of IRIS,Wine and CMC datasets using developed ICA and comparing them with the results of clustering by the original ICA,GA and PSO algorithms,demonstrate the improvement of Imperialist competitive algorithm.
基金Science and Researching Foundation of Jiamusi University(L2006-12)
文摘This paper presents a new Section Set Adaptive FCM algorithm.The algorithm solved the shortcomings of local optimality,unsure classification and clustering numbers ascertained previously.And it improved on the architecture of FCM al- gorithm,enhanced the analysis for effective clustering.During the clustering processing,it may adjust clustering numbers dy- namically.Finally,it used the method of section set decreasing the time of classification.By experiments,the algorithm can im- prove dependability of clustering and correctness of classification.