期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Detection and recognition of LPI radar signals using visibility graphs 被引量:3
1
作者 WAN Tao JIANG Kaili +2 位作者 LIAO Jingyi TANG Yanli TANG Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1186-1192,共7页
The detection and recognition of radar signals play a critical role in the maintenance of future electronic warfare(EW).So far,however,there are still problems with signal detection and recognition,especially in the l... The detection and recognition of radar signals play a critical role in the maintenance of future electronic warfare(EW).So far,however,there are still problems with signal detection and recognition,especially in the low probability of intercept(LPI)radar.This paper explores the usefulness of such an algorithm in the scenario of LPI radar signal detection and recognition based on visibility graphs(VG).More network and feature information can be extracted in the VG two-dimensional space,this algorithm can solve the problem of signal recognition using the autocorrelation function.Wavelet denoising processing is introduced into the signal to be tested,and the denoised signal is converted to the VG domain.Then,the signal detection is performed by using the constant false alarm of the VG average degree.Next,weight the converted graph.Finally,perform feature extraction on the weighted image,and use the feature to complete the recognition.It is testified that the proposed algorithm offers significant improvements,such as robustness to noise,and the detection and recognition accuracy,over the recent researches. 展开更多
关键词 DETECTION recognition visibility graph(VG) support vector machine(SVM) k-nearest neighbor(knn)
在线阅读 下载PDF
基于行走时脚摆角的步态识别方法 被引量:2
2
作者 李一波 卑珊珊 +1 位作者 刘婉竹 刘金英 《计算机工程》 CAS CSCD 2012年第14期132-134,共3页
提出一种利用脚摆动特征进行步态识别的方法。对步态序列图像进行背景提取、图像差分、阈值分割、形态学后处理后,提取行走时的脚摆角作为特征参数,再分别采用BP神经网络、最近邻分类器和K近邻分类器法对这些特征数据进行识别分类与比... 提出一种利用脚摆动特征进行步态识别的方法。对步态序列图像进行背景提取、图像差分、阈值分割、形态学后处理后,提取行走时的脚摆角作为特征参数,再分别采用BP神经网络、最近邻分类器和K近邻分类器法对这些特征数据进行识别分类与比较分析。实验结果表明,与同类方法相比,该方法可以更快速地进行步态识别,且识别性能较好。 展开更多
关键词 步态识别 脚摆角 BP神经网络 最近邻分类器 K近邻分类器
在线阅读 下载PDF
基于联合两种特征的手写体维文字符识别 被引量:5
3
作者 姜文 刘立康 《计算机工程与应用》 CSCD 北大核心 2017年第5期192-196,共5页
提出一种联合两种特征的手写体维文字符识别算法。该算法对手写体维文字符图像进行实值Gabor能量特征和方向线素网格特征的提取,将实值Gabor滤波器的128维能量特征和方向线素的128维网格特征结合起来,使用KNN分类器对两种特征进行联合... 提出一种联合两种特征的手写体维文字符识别算法。该算法对手写体维文字符图像进行实值Gabor能量特征和方向线素网格特征的提取,将实值Gabor滤波器的128维能量特征和方向线素的128维网格特征结合起来,使用KNN分类器对两种特征进行联合分类。对手写体维文字符数据库中的样本分别进行手写体维文字符特征识别和维文字符笔迹特征识别。实验结果表明,和采用一种特征的识别算法比较,进一步提高了手写体维文字符的识别率。该算法也可用于手写体阿拉伯文字符的识别。 展开更多
关键词 手写体维文字符 GABOR滤波器 方向线素 K最近邻(knn)识别分类器
在线阅读 下载PDF
基于混合分类器的表情识别方法 被引量:2
4
作者 张志平 汪庆淼 《计算机工程》 CAS CSCD 北大核心 2010年第23期139-141,145,共4页
根据隐马尔可夫模型(HMM)适用于处理连续动态序列信号、支持向量机(SVM)与K近邻分类器(KNN)擅长模式分类的特点,设计一种(HMM+KNN)+SVM的混合分类器。利用HMM与KNN对测试样本进行判决。当判决结果相同时,直接输出判决结果,否则引入SVM... 根据隐马尔可夫模型(HMM)适用于处理连续动态序列信号、支持向量机(SVM)与K近邻分类器(KNN)擅长模式分类的特点,设计一种(HMM+KNN)+SVM的混合分类器。利用HMM与KNN对测试样本进行判决。当判决结果相同时,直接输出判决结果,否则引入SVM对测试样本进行再判决。实验结果表明,该方法所确定的分类器优于单一的分类器判决,能有效实现表情识别。 展开更多
关键词 表情识别 隐马尔可夫模型 支持向量机 K近邻距离分类器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部