期刊文献+
共找到132,660篇文章
< 1 2 250 >
每页显示 20 50 100
基于改进MPE和K-medoids的变压器绕组松动故障诊断
1
作者 马宏忠 薛健侗 +2 位作者 倪一铭 万可力 迮恒鹏 《高压电器》 北大核心 2025年第9期73-80,共8页
为了更加有效地对变压器绕组松动故障进行诊断,针对变压器有载运行时的振动信号,提出了一种基于改进多尺度排列熵(MPE)和K-medoids的变压器绕组松动故障诊断方法。首先采用粒子群优化(PSO)的MPE算法对绕组不同状态下的变压器振动信号进... 为了更加有效地对变压器绕组松动故障进行诊断,针对变压器有载运行时的振动信号,提出了一种基于改进多尺度排列熵(MPE)和K-medoids的变压器绕组松动故障诊断方法。首先采用粒子群优化(PSO)的MPE算法对绕组不同状态下的变压器振动信号进行特征提取,以减少MPE算法中参数设置对故障类型识别精度的影响,然后通过K-medoids聚类算法诊断变压器绕组松动故障,以完成故障的分类识别。对某10 kV变压器的绕组松动故障模拟实验结果表明,绕组不同状态下变压器振动信号的MPE值经PSO参数优化后存在明显差异,诊断效果优于传统经验设置参数的MPE算法,且稳定性得到提高。 展开更多
关键词 变压器 绕组松动诊断 粒子群优化的MPE算法 特征提取 k-medoids算法
在线阅读 下载PDF
基于K-Medoids提取信道状态特征的无人机探测方法
2
作者 宋玲玉 潘鹏 刘天乐 《电信科学》 北大核心 2025年第1期75-87,共13页
对低空目标的有效管控是推动低空经济发展的关键。城市环境中强杂波和建筑物遮挡等因素使得传统雷达探测手段难以实现对低速无人机的有效监测。基于此,提出了一种无人机探测的新思路,即通过识别信道状态特征的变化来判断无人机是否出现... 对低空目标的有效管控是推动低空经济发展的关键。城市环境中强杂波和建筑物遮挡等因素使得传统雷达探测手段难以实现对低速无人机的有效监测。基于此,提出了一种无人机探测的新思路,即通过识别信道状态特征的变化来判断无人机是否出现在指定区域。该方法的核心在于利用城市中已广泛部署的移动基站等外辐射源,基于K-Medoids聚类算法捕捉无人机出现后对原有多径信道路径数量的影响,从而实现对无人机的感知。该方法不需要构建精确的参考信号,也不需要利用多普勒体制抑制强杂波。仿真结果表明,所提方法在1 km~2范围内能实现80%以上的检测概率,且随着范围缩小,检测概率能达到90%左右,因此能够在城市场景下有效探测低空慢速无人机。 展开更多
关键词 无人机 信道状态信息 外辐射源 k-medoids算法
在线阅读 下载PDF
基于K-medoids-GBDT-PSO-LSTM组合模型的短期光伏功率预测 被引量:3
3
作者 戴朝辉 陈昊 +3 位作者 刘莘轶 夏长青 郭嘉毅 于立军 《太阳能学报》 北大核心 2025年第1期654-661,共8页
为保障电网供需平衡和安全稳定运行,提高大型光伏电站功率预测的精度,提出一种基于K中心点聚类算法(K-medoids)、梯度提升树(GBDT)和粒子群优化算法(PSO)组合优化的长短期记忆神经网络(LSTM)的光伏功率短期预测模型。首先,采用K-medoid... 为保障电网供需平衡和安全稳定运行,提高大型光伏电站功率预测的精度,提出一种基于K中心点聚类算法(K-medoids)、梯度提升树(GBDT)和粒子群优化算法(PSO)组合优化的长短期记忆神经网络(LSTM)的光伏功率短期预测模型。首先,采用K-medoids聚类算法对大规模光伏发电数据样本中的天气数据进行不同类别聚类,分为晴天、阴天和雨/雪天3种天气类型;然后,在已有数据基础上构造特征工程,使用GBDT算法分别进行特征重要性分析,筛选出对光伏功率预测具有显著影响的特征,并构建合适大小结构的优化数据集;最后,将重构后的数据集代入PSO算法优化的LSTM模型进行训练,以建立短期预测模型。实验结果表明,该模型拥有更高预测精度,相比单一LSTM模型,在雨/雪天下的RMSE指标降低了12.19%。 展开更多
关键词 光伏发电 功率预测 机器学习 长短期记忆网络 优化算法 粒子群算法
在线阅读 下载PDF
一种高效的K-medoids聚类算法 被引量:48
4
作者 夏宁霞 苏一丹 覃希 《计算机应用研究》 CSCD 北大核心 2010年第12期4517-4519,共3页
针对K-medoids算法初始中心点选择敏感、大数据集聚类应用中性能低下等缺点,提出一个基于初始中心微调与增量中心候选集的改进K-medoids算法。新算法以微调方式优化初始中心,以中心候选集逐步扩展的方式来降低中心轮换的计算复杂性。实... 针对K-medoids算法初始中心点选择敏感、大数据集聚类应用中性能低下等缺点,提出一个基于初始中心微调与增量中心候选集的改进K-medoids算法。新算法以微调方式优化初始中心,以中心候选集逐步扩展的方式来降低中心轮换的计算复杂性。实验结果表明,相对于传统的K-medoids算法,新算法可以提高聚类质量,有效缩短计算时间。 展开更多
关键词 聚类 k-medoids算法 中心微调 增量候选
在线阅读 下载PDF
基于距离不等式的K-medoids聚类算法 被引量:16
5
作者 余冬华 郭茂祖 +3 位作者 刘扬 任世军 刘晓燕 刘国军 《软件学报》 EI CSCD 北大核心 2017年第12期3115-3128,共14页
研究加速K-medoids聚类算法,首先以PAM(partitioning around medoids)、TPAM(triangular inequality elimination criteria PAM)算法为基础给出两个加速引理,并基于中心点之间距离不等式提出两个新加速定理.同时,以O(n+K^2)额外内存空... 研究加速K-medoids聚类算法,首先以PAM(partitioning around medoids)、TPAM(triangular inequality elimination criteria PAM)算法为基础给出两个加速引理,并基于中心点之间距离不等式提出两个新加速定理.同时,以O(n+K^2)额外内存空间开销辅助引理、定理的结合而提出加速SPAM(speed up PAM)聚类算法,使得K-medoids聚类算法复杂度由O(K(n-K)~2)降低至O((n-K)~2).在实际及人工模拟数据集上的实验结果表明:相对于PAM,TPAM,FKMEDOIDS(fast K-medoids)等参考算法均有改进,运行时间比PAM至少提升0.828倍. 展开更多
关键词 数据挖掘 聚类算法 k-medoids 距离不等式
在线阅读 下载PDF
基于粒计算的K-medoids聚类算法 被引量:39
6
作者 马箐 谢娟英 《计算机应用》 CSCD 北大核心 2012年第7期1973-1977,共5页
传统K-medoids聚类算法的聚类结果随初始中心点不同而波动,且计算复杂度较高不适于处理大规模数据集;快速K-medoids聚类算法通过选择合适的初始聚类中心改进了传统K-medoids聚类算法,但是快速K-medoids聚类算法的初始聚类中心有可能位... 传统K-medoids聚类算法的聚类结果随初始中心点不同而波动,且计算复杂度较高不适于处理大规模数据集;快速K-medoids聚类算法通过选择合适的初始聚类中心改进了传统K-medoids聚类算法,但是快速K-medoids聚类算法的初始聚类中心有可能位于同一类簇。为克服传统K-medoids聚类算法和快速K-medoids聚类算法的缺陷,提出一种基于粒计算的K-medoids聚类算法。算法引入粒度概念,定义新的样本相似度函数,基于等价关系产生粒子,根据粒子包含样本多少定义粒子密度,选择密度较大的前K个粒子的中心样本点作为K-medoids聚类算法的初始聚类中心,实现K-medoids聚类。UCI机器学习数据库数据集以及随机生成的人工模拟数据集实验测试,证明了基于粒计算的K-medoids聚类算法能得到更好的初始聚类中心,聚类准确率和聚类误差平方和优于传统K-medoids和快速K-medoids聚类算法,具有更稳定的聚类结果,且适用于大规模数据集。 展开更多
关键词 传统k-medoids聚类算法 快速k-medoids聚类算法 粒计算 等价关系 聚类
在线阅读 下载PDF
基于多核平台并行K-Medoids算法研究 被引量:9
7
作者 李静滨 杨柳 华蓓 《计算机应用研究》 CSCD 北大核心 2011年第2期498-500,共3页
分析K-Medoids算法的内在并行性,设计一个适合多核平台的并行算法,并利用OpenMP进行实验。实验结果表明,并行算法对多核环境有很好的适应性,在双核及四核计算机上均获得了较好的加速比与运行效率。
关键词 多核 k-medoids算法 并行算法 OPENMP
在线阅读 下载PDF
一种新的k-medoids聚类算法 被引量:19
8
作者 姚丽娟 罗可 孟颖 《计算机工程与应用》 CSCD 2013年第19期153-157,共5页
针对k-medoids算法对初始聚类中心敏感,聚类精度较低及收敛速度缓慢的缺点,提出一种基于密度初始化、密度迭代的搜索策略和准则函数优化的方法。该算法初始化是在高密度区域内选择k个相对距离较远的样本作为聚类初始中心,有效定位聚类... 针对k-medoids算法对初始聚类中心敏感,聚类精度较低及收敛速度缓慢的缺点,提出一种基于密度初始化、密度迭代的搜索策略和准则函数优化的方法。该算法初始化是在高密度区域内选择k个相对距离较远的样本作为聚类初始中心,有效定位聚类的最终中心点;在k个与初始中心点密度相近的区域内进行中心点替换,以减少候选点的搜索范围;采用类间距和类内距加权的均衡化准则函数,提高聚类精度。实验结果表明,相对于传统的k-mediods算法及某些改进算法,该算法可以提高聚类质量,有效缩短聚类时间。 展开更多
关键词 聚类 k-medoids算法 密度初始化 目标函数
在线阅读 下载PDF
一种基于ACO的K-medoids聚类算法 被引量:9
9
作者 孟颖 罗可 +1 位作者 姚丽娟 王琳 《计算机工程与应用》 CSCD 2012年第16期136-139,152,共5页
K-medoids算法作为聚类算法的一种,不易受极端数据的影响,适应性广泛,但是K-medoids聚类算法的精确度不稳定,平均准确率较低,用于实际的聚类分析时效果较差。ACO是一种仿生优化算法,其具有很强的健壮性,容易与其他方法相结合,求解效率... K-medoids算法作为聚类算法的一种,不易受极端数据的影响,适应性广泛,但是K-medoids聚类算法的精确度不稳定,平均准确率较低,用于实际的聚类分析时效果较差。ACO是一种仿生优化算法,其具有很强的健壮性,容易与其他方法相结合,求解效率高等特点。在K-medoids聚类算法的基础上,借鉴ACO算法的优点,提出了一种新的聚类算法,它提高了聚类的准确率,算法的稳定性也比较高。通过仿真实验,验证了算法的可行性和先进性。 展开更多
关键词 蚁群优化算法(ACO) 聚类分析 k-medoids算法
在线阅读 下载PDF
基于MapReduce的K-Medoids并行算法 被引量:33
10
作者 张雪萍 龚康莉 赵广才 《计算机应用》 CSCD 北大核心 2013年第4期1023-1025,1035,共4页
为了解决传统K-Medoids聚类算法在处理海量数据信息时所面临的内存容量和CPU处理速度的瓶颈问题,在深入研究K-Medoids算法的基础之上,提出了基于MapReduce编程模型的K-Medoids并行化算法思想。Map函数部分的主要任务是计算每个数据对象... 为了解决传统K-Medoids聚类算法在处理海量数据信息时所面临的内存容量和CPU处理速度的瓶颈问题,在深入研究K-Medoids算法的基础之上,提出了基于MapReduce编程模型的K-Medoids并行化算法思想。Map函数部分的主要任务是计算每个数据对象到簇类中心点的距离并(重新)分配其所属的聚类簇;Reduce函数部分的主要任务是根据Map部分得到的中间结果,计算出新簇类的中心点,然后作为中心点集给下一次MapReduce过程使用。实验结果表明:运行在Hadoop集群上的基于MapReduce的K-Medoids并行化算法具有较好的聚类结果和可扩展性,对于较大的数据集,该算法得到的加速比更接近于线性。 展开更多
关键词 k-medoids 云计算 MAPREDUCE 并行计算 HADOOP
在线阅读 下载PDF
基于K-Medoids聚类的改进KNN文本分类算法 被引量:25
11
作者 罗贤锋 祝胜林 +1 位作者 陈泽健 袁玉强 《计算机工程与设计》 CSCD 北大核心 2014年第11期3864-3867,3937,共5页
为有效提高传统KNN算法(K最近邻算法)在海量数据的分类效率,分析传统KNN算法的分类过程,提出基于K-Medoids聚类的改进KNN算法。利用K-Medoids算法对文本训练集进行聚类,把文本训练集分成相似度较高的簇;根据待分类文本与簇的相对位置,... 为有效提高传统KNN算法(K最近邻算法)在海量数据的分类效率,分析传统KNN算法的分类过程,提出基于K-Medoids聚类的改进KNN算法。利用K-Medoids算法对文本训练集进行聚类,把文本训练集分成相似度较高的簇;根据待分类文本与簇的相对位置,对文本训练集进行裁剪,解决传统KNN算法在文本训练集过大时速度慢的问题。分析与实验结果表明,该裁剪方法能够合理有效地裁剪文本训练集,提高了KNN算法的运行效率和分类能力。 展开更多
关键词 文本分类 隶属度 K最近邻 样本裁剪 k-medoids聚类
在线阅读 下载PDF
粒子群K-Medoids带障碍约束空间聚类分析研究 被引量:6
12
作者 张雪萍 王家耀 +1 位作者 范中山 邓高峰 《小型微型计算机系统》 CSCD 北大核心 2009年第10期2025-2029,共5页
空间聚类分析是空间数据挖掘研究领域中的一个重要研究课题.传统聚类算法忽略了真实世界中许多约束条件的存在,而约束条件的存在会影响聚类结果的合理性.本文在分析粒子群优化算法和划分算法的基础上,研究一种基于粒子群和划分相结合的... 空间聚类分析是空间数据挖掘研究领域中的一个重要研究课题.传统聚类算法忽略了真实世界中许多约束条件的存在,而约束条件的存在会影响聚类结果的合理性.本文在分析粒子群优化算法和划分算法的基础上,研究一种基于粒子群和划分相结合的带障碍约束空间聚类分析方法,设计了一个粒子群K-Medoids带障碍约束空间聚类分析算法.对比实验表明,该方法不仅兼顾了局部收敛和全局收敛性能,又充分考虑到了现实障碍物对聚类结果的影响,使得聚类结果更具实际意义.与遗传K-Medoids带障碍约束空间聚类分析相比,该方法具有更好的可伸缩性,且所需输入的参数相对较少,更适合于对聚类速度要求较高的动态约束条件场合. 展开更多
关键词 空间聚类 k-medoids算法 粒子群优化算法 障碍约束
在线阅读 下载PDF
密度峰值优化初始中心的K-medoids聚类算法 被引量:29
13
作者 谢娟英 屈亚楠 《计算机科学与探索》 CSCD 北大核心 2016年第2期230-247,共18页
针对快速K-medoids聚类算法和方差优化初始中心的K-medoids聚类算法存在需要人为给定类簇数,初始聚类中心可能位于同一类簇,或无法完全确定数据集初始类簇中心等缺陷,受密度峰值聚类算法启发,提出了两种自适应确定类簇数的K-medoids算... 针对快速K-medoids聚类算法和方差优化初始中心的K-medoids聚类算法存在需要人为给定类簇数,初始聚类中心可能位于同一类簇,或无法完全确定数据集初始类簇中心等缺陷,受密度峰值聚类算法启发,提出了两种自适应确定类簇数的K-medoids算法。算法采用样本x i的t最近邻距离之和倒数度量其局部密度ρi,并定义样本x i的新距离δi,构造样本距离相对于样本密度的决策图。局部密度较高且相距较远的样本位于决策图的右上角区域,且远离数据集的大部分样本。选择这些样本作为初始聚类中心,使得初始聚类中心位于不同类簇,并自动得到数据集类簇数。为进一步优化聚类结果,提出采用类内距离与类间距离之比作为聚类准则函数。在UCI数据集和人工模拟数据集上进行了实验测试,并对初始聚类中心、迭代次数、聚类时间、Rand指数、Jaccard系数、Adjusted Rand index和聚类准确率等经典聚类有效性评价指标进行了比较,结果表明提出的K-medoids算法能有效识别数据集的真实类簇数和合理初始类簇中心,减少聚类迭代次数,缩短聚类时间,提高聚类准确率,并对噪音数据具有很好的鲁棒性。 展开更多
关键词 聚类 k-medoids算法 初始聚类中心 密度峰值 准则函数
在线阅读 下载PDF
一种MapReduce架构下基于遗传算法的K-Medoids聚类 被引量:18
14
作者 赖向阳 宫秀军 韩来明 《计算机科学》 CSCD 北大核心 2017年第3期23-26,58,共5页
由互联网时代快速发展而产生的海量数据给传统聚类方法带来了巨大挑战,如何改进聚类算法从而获取有效信息成为当前的研究热点。K-Medoids是一种常见的基于划分的聚类算法,其优点是可以有效处理孤立、噪声点,但面临着初始中心敏感、容易... 由互联网时代快速发展而产生的海量数据给传统聚类方法带来了巨大挑战,如何改进聚类算法从而获取有效信息成为当前的研究热点。K-Medoids是一种常见的基于划分的聚类算法,其优点是可以有效处理孤立、噪声点,但面临着初始中心敏感、容易陷入局部最优值、处理大数据时的CPU和内存瓶颈等问题。为解决上述问题,提出了一种MapReduce架构下基于遗传算法的K-Medoids聚类。利用遗传算法的种群进化特点改进K-Medoids算法的初始中心敏感的问题,在此基础上,利用MapReduce并行遗传K-Medoids算法提高算法效率。通过带标签的数据集进行实验的结果表明,运行在Hadoop集群上的基于MapReduce和遗传算法的K-Medoids算法能有效提高聚类的质量和效率。 展开更多
关键词 海量数据 k-medoids MAPREDUCE 遗传算法 聚类效率
在线阅读 下载PDF
基于MapReduce的改进K-Medoids并行算法 被引量:5
15
作者 李静滨 杨柳 陈宁江 《广西大学学报(自然科学版)》 CAS 北大核心 2014年第2期341-345,共5页
K-Medoids算法具有不同层次的并行性,计算粒度不同对并行算法效率有较大影响。基于K-Medoids的并行计算特点,提出了一个改进的K-Medoids并行算法,该算法基于MapReduce模型,通过适当增加计算粒度,降低了通信消耗占比。实验结果表明,改进... K-Medoids算法具有不同层次的并行性,计算粒度不同对并行算法效率有较大影响。基于K-Medoids的并行计算特点,提出了一个改进的K-Medoids并行算法,该算法基于MapReduce模型,通过适当增加计算粒度,降低了通信消耗占比。实验结果表明,改进的并行算法与其他已有算法相比,加速比与运行效率有显著提高。 展开更多
关键词 k-medoids算法 并行算法 计算粒度
在线阅读 下载PDF
一种基于差分演化的K-medoids聚类算法 被引量:11
16
作者 孟颖 罗可 +1 位作者 刘建华 石爽 《计算机应用研究》 CSCD 北大核心 2012年第5期1651-1653,共3页
针对传统的K-medoids聚类算法具有对初始聚类中心敏感、全局搜索能力差、易陷入局部最优、收敛速度缓慢等缺点,提出一种基于差分演化的K-medoids聚类算法。差分演化是一类基于种群的启发式全局搜索技术,有很强的鲁棒性。将差分演化的全... 针对传统的K-medoids聚类算法具有对初始聚类中心敏感、全局搜索能力差、易陷入局部最优、收敛速度缓慢等缺点,提出一种基于差分演化的K-medoids聚类算法。差分演化是一类基于种群的启发式全局搜索技术,有很强的鲁棒性。将差分演化的全局优化能力用于K-medoids聚类算法,有效地克服了K-medoids聚类算法的缺点,缩短了收敛时间,改善了聚类质量。通过仿真验证了此算法的稳定性和鲁棒性。 展开更多
关键词 差分演化 聚类质量 k-medoids算法 全局优化
在线阅读 下载PDF
蚁群K-medoids融合的聚类算法 被引量:10
17
作者 赵烨 黄泽君 《电子测量与仪器学报》 CSCD 2012年第9期800-804,共5页
蚁群算法能够在没有任何先验知识和人为干预的情况下实现自主聚类,并且鲁棒性较强,易于与其他算法相结合。但蚁群算法消耗时间成本较大,效率较低。而K-medoids聚类是一个基于划分的经典聚类算法,该算法聚类速度快、聚类效果好而被广泛... 蚁群算法能够在没有任何先验知识和人为干预的情况下实现自主聚类,并且鲁棒性较强,易于与其他算法相结合。但蚁群算法消耗时间成本较大,效率较低。而K-medoids聚类是一个基于划分的经典聚类算法,该算法聚类速度快、聚类效果好而被广泛应用于各种聚类处理中。但需要人为确定簇数目,并对初始簇中心的依赖性较强。针对以上问题,提出了结合蚁群算法和K-medoids的聚类算法(AKCA),该算法融合了蚁群算法和K-medoids算法各自在聚类上的优点。实验结果表明,该算法对于小型数据集具有运行效率高、聚类质量好和自适用性强等优点。 展开更多
关键词 聚类分析 蚁群算法 k-medoids算法
在线阅读 下载PDF
一种改进人工蜂群的K-medoids聚类算法 被引量:9
18
作者 李莲 罗可 周博翔 《计算机工程与应用》 CSCD 2013年第16期146-150,共5页
针对传统K-medoids聚类算法初始聚类中心选择较敏感、聚类效率和精度较低、全局搜索能力较差以及传统蜂群算法初始蜂群和搜索步长随机选取等缺点,提出了一种基于粒子和最大最小距离法初始化蜂群和随着迭代次数增加动态调整搜索步长的人... 针对传统K-medoids聚类算法初始聚类中心选择较敏感、聚类效率和精度较低、全局搜索能力较差以及传统蜂群算法初始蜂群和搜索步长随机选取等缺点,提出了一种基于粒子和最大最小距离法初始化蜂群和随着迭代次数增加动态调整搜索步长的人工蜂群算法,将改进的人工蜂群进一步优化K-medoids,以提高聚类算法的性能。实验结果表明:该算法降低了对噪声的敏感程度,具有较高的效率和准确率,较强的稳定性。 展开更多
关键词 聚类 人工蜂群算法 粒计算 k-medoids
在线阅读 下载PDF
基于K-Medoids聚类的多传感器航迹关联算法 被引量:6
19
作者 徐丽 马培军 苏小红 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2012年第1期107-110,148,共5页
为有效解决目标密集环境下的航迹关联问题,提出了一种基于K-Medoids聚类的航迹关联算法.该算法采用局部航迹与系统航迹进行关联的策略,将系统航迹作为Medoids,降低了需要关联的航迹对数量,避免了K-Medoids的固有缺陷,很大程度上提高了... 为有效解决目标密集环境下的航迹关联问题,提出了一种基于K-Medoids聚类的航迹关联算法.该算法采用局部航迹与系统航迹进行关联的策略,将系统航迹作为Medoids,降低了需要关联的航迹对数量,避免了K-Medoids的固有缺陷,很大程度上提高了关联算法的效率.通过采用无穷范数计算采样点点迹距离求出了两条航迹的近似距离,这使得关联判决能考虑历史和当前航迹,提高了正确关联率.在多传感器多目标环境下讨论了其具体实现过程,仿真实验结果验证了该算法的有效性和优越性.该算法在存在噪音和离群点时,具有很强的健壮性,适合目标密集环境. 展开更多
关键词 航迹关联 k-medoids聚类 无穷范数 多传感器 多目标
在线阅读 下载PDF
一种基于Hadoop的高效K-Medoids并行算法 被引量:4
20
作者 王永贵 戴伟 武超 《计算机工程与应用》 CSCD 北大核心 2015年第16期47-54,共8页
针对传统K-Medoids算法对初始聚类中心敏感、收敛速度慢,以及在大数据环境下所面临的内存容量和CPU处理速度的瓶颈问题,从改进初始中心选择方案和中心替换策略入手,利用Hadoop分布式计算平台结合基于Top K的并行随机采样策略,实现了一... 针对传统K-Medoids算法对初始聚类中心敏感、收敛速度慢,以及在大数据环境下所面临的内存容量和CPU处理速度的瓶颈问题,从改进初始中心选择方案和中心替换策略入手,利用Hadoop分布式计算平台结合基于Top K的并行随机采样策略,实现了一种高效稳定的K-Medoids并行算法,并且通过调整Hadoop平台,实现算法的进一步优化。实验证明,改进的K-Medoids算法不仅有良好的加速比,其收敛性和聚类精度均得到了改善。 展开更多
关键词 k-medoids 分布式计算 HADOOP 并行采样
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部