期刊文献+
共找到2,045篇文章
< 1 2 103 >
每页显示 20 50 100
基于K-means聚类粒子群算法的海洋结构迭代型损伤识别方法
1
作者 周旭涛 赵海旭 +2 位作者 蒋玉峰 王树青 刘雨 《中国海洋大学学报(自然科学版)》 北大核心 2025年第4期134-147,共14页
为了解决传统智能优化算法在结构损伤识别中易陷入局部最优解,导致损伤识别时误判单元较多且识别精度较差的问题,本文提出了一种迭代型结构损伤识别方法。该方法创新性地引入了基于K-means聚类的新型粒子群算法,以加快算法收敛和避免陷... 为了解决传统智能优化算法在结构损伤识别中易陷入局部最优解,导致损伤识别时误判单元较多且识别精度较差的问题,本文提出了一种迭代型结构损伤识别方法。该方法创新性地引入了基于K-means聚类的新型粒子群算法,以加快算法收敛和避免陷入局部最优解,同时,采用迭代思想对传统损伤识别方法进行改进,将损伤识别结果进行迭代更新,以获得准确的损伤位置及损伤程度。以某三腿海上风机结构为例:首先,探讨了非迭代型方法在无噪声和有噪声污染时的结构损伤识别效果;其次,分析所提出的迭代型方法在无噪声和有噪声污染两种情况下的结构损伤识别效果;然后,探究了所提出方法的收敛性及稳定性;最后,采用物理模型试验对提出的方法进行了验证。结果表明,提出的迭代型聚类粒子群算法相比传统结构损伤识别方法可获得更准确的损伤位置及损伤程度,并展现出良好的噪声鲁棒性,且算法迭代次数少,识别效果稳定。 展开更多
关键词 k-means聚类粒子群算法 损伤识别 海上风机结构 迭代型方法
在线阅读 下载PDF
一种嵌套K-means聚类的任意形状波束子阵划分方法
2
作者 张清河 李宇航 +1 位作者 沈钊阳 文方青 《电子学报》 北大核心 2025年第1期119-127,共9页
传统相控阵由于其高昂成本的限制,已经无法满足日益增长的广泛应用需求,而基于稀疏阵、子阵等技术的非传统相控阵技术则得到了广泛的关注和研究.如何有效地划分子阵,以及如何优化子阵的计算过程,是提高计算效率和性能的关键问题.本文提... 传统相控阵由于其高昂成本的限制,已经无法满足日益增长的广泛应用需求,而基于稀疏阵、子阵等技术的非传统相控阵技术则得到了广泛的关注和研究.如何有效地划分子阵,以及如何优化子阵的计算过程,是提高计算效率和性能的关键问题.本文提出一种融合群智能优化算法及聚类技术的嵌套迭代优化方法来解决任意形状波束子阵划分问题.该方法包含内、外两个嵌套循环迭代优化过程:(i)外循环采用群智能优化方法来实现用户定义任意方向图下的参考阵列,并利用谢昆诺夫多项式和基本代数理论分析得到多组不同的阵列单元复激励(由阵因子多项式分布在非谢昆诺夫单位圆上的根所决定);(ii)内循环基于激励匹配策略,专注于通过K-means聚类方法实现阵列天线的最优子阵布局及相应的子阵复激励系数,并最终产生一个逼近参考阵列的波束方向图.通过与传统K-means聚类方法、粒子群优化方法在方向图逼近、激励匹配误差、模式匹配误差、阵列性能参数及计算效率等方面的比较,验证了所提方法的有效性. 展开更多
关键词 任意形状波束阵列 子阵划分 嵌套k-means聚类 激励匹配策略 群智能优化方法
在线阅读 下载PDF
一种基于K-means聚类算法的沙尘天气客观识别方法 被引量:6
3
作者 段赛男 焦瑞莉 吴成来 《气候与环境研究》 CSCD 北大核心 2024年第2期178-192,共15页
鉴于以往基于污染物浓度时间序列进行分析的沙尘天气识别方法在判断标准上存在一定的主观性,本文提出一种基于K-means聚类算法的沙尘天气客观识别方法。本方法利用环境监测总站的PM2.5和PM10小时浓度资料进行聚类,首先选取最优的分类数... 鉴于以往基于污染物浓度时间序列进行分析的沙尘天气识别方法在判断标准上存在一定的主观性,本文提出一种基于K-means聚类算法的沙尘天气客观识别方法。本方法利用环境监测总站的PM2.5和PM10小时浓度资料进行聚类,首先选取最优的分类数目K进行聚类,其次对聚类结果中离散程度较高的类别进行再次聚类,直到无需分类。将本方法应用于西安市2018年2~4月沙尘天气的识别中,结果表明,本方法可有效识别主要沙尘天气。此外,利用本方法可得到沙尘天气典型特征:PM2.5占PM10浓度的比例小于43.5%、PM10浓度高于228μg/m^(3,)符合沙尘天气期间PM10浓度较高且以粗颗粒物为主的物理特征。总体上看,本方法物理基础清晰,可操行性强,适用于大规模数据处理,具有较好的实用价值和应用前景。 展开更多
关键词 沙尘天气识别 k-means 聚类 客观识别 PM2.5 PM10
在线阅读 下载PDF
Blind source separation by weighted K-means clustering 被引量:5
4
作者 Yi Qingming 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期882-887,共6页
Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not ... Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not satisfactory. The contribution of the vector x(t) with different modules is theoretically proved to be unequal, and a weighted K-means clustering method is proposed on this grounds. The proposed algorithm is not only as fast as the conventional K-means clustering method, but can also achieve considerably accurate results, which is demonstrated by numerical experiments. 展开更多
关键词 blind source separation underdetermined mixing sparse representation weighted k-means clustering.
在线阅读 下载PDF
基于自组织映射和K-means聚类的分层设计空间动态缩减方法及其在船型优化中的应用
5
作者 于群 李鹏 +3 位作者 郑强 冯佰威 邱春良 曾大连 《中国舰船研究》 CSCD 北大核心 2024年第6期64-73,共10页
[目的]基于CFD的船型优化由于其高维、计算昂贵、“黑盒”等特点,通常会存在优化效率低,优化质量差的问题。针对以上问题,基于自组织映射方法和K-means聚类提出分层设计空间动态缩减方法(HSRM)。[方法]利用K-means聚类算法,对自组织映... [目的]基于CFD的船型优化由于其高维、计算昂贵、“黑盒”等特点,通常会存在优化效率低,优化质量差的问题。针对以上问题,基于自组织映射方法和K-means聚类提出分层设计空间动态缩减方法(HSRM)。[方法]利用K-means聚类算法,对自组织映射方法的可视化结果进行聚类,并提取感兴趣的区域。通过该方式,可在船型优化过程中,对样本仿真数据进行数据挖掘、提取设计知识、指导设计优化,以提高优化质量。最后将该方法应用于7500吨级散货船的船型优化设计过程以验证有效性。[结果]结果表明,利用传统粒子群优化算法(PSO)和HSRM得到的优化船型总阻力分别降低1.854%和2.266%,HSRM能得到更高质量的优化解。[结论]所提出的方法可以指导优化算法向着最优解的方向进行寻优,有效提高优化效率和优化质量。 展开更多
关键词 船舶设计 船型优化 自组织映射 设计空间缩减 聚类分析 分层设计空间动态缩减方法
在线阅读 下载PDF
基于K-means聚类及模糊判别的卷烟包灰性能综合评价方法 被引量:1
6
作者 楚文娟 郭丽霞 +5 位作者 程东旭 王红霞 崔廷 冯银龙 王建民 鲁平 《轻工学报》 CAS 北大核心 2024年第6期93-100,共8页
为实现卷烟包灰性能的综合评价和评价结果具象化,以49个卷烟的灰色、裂口率、缩灰率、碳线宽度、碳线整齐度测定结果为原始变量,先运用K-means聚类、模糊判别法将原始变量转换为具象化的得分数据,再运用Critic赋权法赋予各项指标权重,... 为实现卷烟包灰性能的综合评价和评价结果具象化,以49个卷烟的灰色、裂口率、缩灰率、碳线宽度、碳线整齐度测定结果为原始变量,先运用K-means聚类、模糊判别法将原始变量转换为具象化的得分数据,再运用Critic赋权法赋予各项指标权重,建立了一种卷烟包灰性能综合评价方法。结果表明:将原始变量转换成区间为60~100、平均值在80左右的得分,可使评价结果具象化且更加符合认知习惯;5项指标的权重由高到低依次为裂口率(0.27)>缩灰率(0.25)>灰色(0.18)>碳线整齐度(0.16)>碳线宽度(0.14);卷烟包灰性能可划分为优、良、差三档,各档得分区间依次为(85,100]、[75,85]、[60,75);不同档次代表性卷烟的灰柱视觉效果对比结果证明,综合得分可客观反映卷烟包灰性能的优劣。 展开更多
关键词 卷烟 包灰性能 k-means聚类 模糊判别 Critic赋权法
在线阅读 下载PDF
A K-means clustering based blind multiband spectrum sensing algorithm for cognitive radio 被引量:3
7
作者 LEI Ke-jun TAN Yang-hong +1 位作者 YANG Xi WANG Han-rui 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第10期2451-2461,共11页
In this paper,a blind multiband spectrum sensing(BMSS)method requiring no knowledge of noise power,primary signal and wireless channel is proposed based on the K-means clustering(KMC).In this approach,the KMC algorith... In this paper,a blind multiband spectrum sensing(BMSS)method requiring no knowledge of noise power,primary signal and wireless channel is proposed based on the K-means clustering(KMC).In this approach,the KMC algorithm is used to identify the occupied subband set(OSS)and the idle subband set(ISS),and then the location and number information of the occupied channels are obtained according to the elements in the OSS.Compared with the classical BMSS methods based on the information theoretic criteria(ITC),the new method shows more excellent performance especially in the low signal-to-noise ratio(SNR)and the small sampling number scenarios,and more robust detection performance in noise uncertainty or unequal noise variance applications.Meanwhile,the new method performs more stablely than the ITC-based methods when the occupied subband number increases or the primary signals suffer multi-path fading.Simulation result verifies the effectiveness of the proposed method. 展开更多
关键词 cognitive radio(CR) blind multiband spectrum sensing(BMSS) k-means clustering(KMC) occupied subband set(OSS) idle subband set(ISS) information theoretic criteria(ITC) noise uncertainty
在线阅读 下载PDF
粗糙核k-means聚类算法 被引量:15
8
作者 周涛 张艳宁 +2 位作者 袁和金 陆惠玲 邓方安 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第4期921-925,共5页
通过研究核聚类算法,以及粗糙集,提出了一个新的用于聚类分析的粗糙核聚类方法。通过mercer核映射把输入空间中的样本映射到Hilbert空间,使样本空间中没有显现的特征在特征空间中突现出来,在这种样本差异加大的基础上,结合粗糙集的思想... 通过研究核聚类算法,以及粗糙集,提出了一个新的用于聚类分析的粗糙核聚类方法。通过mercer核映射把输入空间中的样本映射到Hilbert空间,使样本空间中没有显现的特征在特征空间中突现出来,在这种样本差异加大的基础上,结合粗糙集的思想,把样本分别划到相应聚类中心的上、下近似中,上、下近似中的样本按照一定的比例来共同决定新的聚类中心。这样不但聚类精度大大提高,而且算法收敛速度也较快。仿真实验的结果表明该算法的可行性和有效性。 展开更多
关键词 核方法 核聚类算法 k-means 粗糙集 粗糙聚类
在线阅读 下载PDF
基于最优划分的K-Means初始聚类中心选取算法 被引量:62
9
作者 张健沛 杨悦 +1 位作者 杨静 张泽宝 《系统仿真学报》 CAS CSCD 北大核心 2009年第9期2586-2590,共5页
针对传统K-Means算法聚类过程中,聚类数目k值难以准确预设和随机选取初始聚类中心造成聚类精度及效率降低等问题,提出一种基于最优划分的K-Means初始聚类中心选取算法,该算法利用直方图方法将数据样本空间进行最优划分,依据数据样本自... 针对传统K-Means算法聚类过程中,聚类数目k值难以准确预设和随机选取初始聚类中心造成聚类精度及效率降低等问题,提出一种基于最优划分的K-Means初始聚类中心选取算法,该算法利用直方图方法将数据样本空间进行最优划分,依据数据样本自身分布特点确定K-Means算法的初始聚类中心,无需预设k值,减少了算法结果对参数的依赖,提高算法运算效率及准确率。实验结果表明,利用该算法改进的K-Means算法,运算时间明显减少,其聚类结果准确率以及算法效率均得到显著提高。 展开更多
关键词 K—Means算法 初始聚类中心 直方图 最优划分方法
在线阅读 下载PDF
基于改进的密度峰值算法的K-means算法 被引量:12
10
作者 杜洪波 白阿珍 朱立军 《统计与决策》 CSSCI 北大核心 2018年第18期20-24,共5页
针对传统K-means算法存在的随机选取初始聚类中心和类簇数目需要人为选定,从而导致聚类结果不稳定,容易陷入局部最优解的问题,文章提出了一种基于改进的密度峰值算法(DPC)的K-means算法,该算法首先采用改进的DPC算法来选取初始聚类中... 针对传统K-means算法存在的随机选取初始聚类中心和类簇数目需要人为选定,从而导致聚类结果不稳定,容易陷入局部最优解的问题,文章提出了一种基于改进的密度峰值算法(DPC)的K-means算法,该算法首先采用改进的DPC算法来选取初始聚类中心,弥补了K-means算法初始聚类中心随机选取导致易陷入局部最优解的缺陷;其次运用K-means算法进行迭代,并且引入熵值法计算距离优化聚类。在UCI数据集上的实验表明,该算法得到较好的初始聚类中心和较稳定的聚类结果,并且收敛速度也较快,证明了该算法的可行性。 展开更多
关键词 k-means算法 改进的DPC算法 聚类 熵值法 初始聚类中心 优化聚类
在线阅读 下载PDF
基于K-means聚类与最大类间方差的磨粒彩色图像分割 被引量:10
11
作者 邱丽娟 宣征南 张兴芳 《润滑与密封》 CAS CSCD 北大核心 2014年第12期101-104,109,共5页
针对在HSI颜色空间下存在的图像的二维颜色分量分布散乱不紧密,存在聚类中心计算错误,利用二维颜色分量很难将背景和磨粒准确分割开,分割完的铁谱图像仍包含许多不需要的微小磨粒等问题,提出采用K-means聚类与最大类间方差的图像分割方... 针对在HSI颜色空间下存在的图像的二维颜色分量分布散乱不紧密,存在聚类中心计算错误,利用二维颜色分量很难将背景和磨粒准确分割开,分割完的铁谱图像仍包含许多不需要的微小磨粒等问题,提出采用K-means聚类与最大类间方差的图像分割方法。分别选取球粒、切削磨粒、严重滑动磨粒、红色氧化物、疲劳磨粒的彩色图像,在Lab颜色空间下利用二维颜色分量进行聚类分析及最大类间方差阈值分割,并进行三维数学形态学处理。结果表明,提出的方法实现了小磨粒与目标磨粒的有效分割,可以得到较为完整的彩色磨粒图像,为磨粒的颜色参数识别提供有效的依据。 展开更多
关键词 k-means聚类 Lab颜色空间 最大类间方差法
在线阅读 下载PDF
一种基于SOM和K-means的文档聚类算法 被引量:16
12
作者 杨占华 杨燕 《计算机应用研究》 CSCD 北大核心 2006年第5期73-74,79,共3页
提出了一种把自组织特征映射SOM和K-means算法结合的聚类组合算法。先用SOM对文档聚类,然后以SOM的输出权值初始化K-means的聚类中心,再用K-means算法对文档聚类。实验结果表明,该聚类组合算法能改进文档聚类的性能。
关键词 自组织特征映射 k-means 聚类 组合方法 文档聚类
在线阅读 下载PDF
基于K-means聚类方法的早期聚落规模等级研究 被引量:5
13
作者 闫丽洁 张嫣文 +3 位作者 鲁鹏 陈盼盼 张莉 王霞 《地域研究与开发》 CSSCI CSCD 北大核心 2020年第2期176-180,共5页
选择聚落面积、文化层厚度、重要遗物、重要遗迹四大影响聚落规模等级的因子作为参评因子,通过数据预处理、数据归一化操作,利用K-means聚类方法对华夏文明核心区——环嵩山地区在裴李岗、仰韶、龙山、夏商4个时期的聚落规模等级进行划... 选择聚落面积、文化层厚度、重要遗物、重要遗迹四大影响聚落规模等级的因子作为参评因子,通过数据预处理、数据归一化操作,利用K-means聚类方法对华夏文明核心区——环嵩山地区在裴李岗、仰韶、龙山、夏商4个时期的聚落规模等级进行划分。结果表明:(1)不同时期一级聚落的面积越来越大,在每个文化时期聚落中所占的比例却是越来越小。(2)各个文化时期的聚落数量有明显的等级分布特点,呈金字塔型层级结构,等级越高数量越少,等级越低数量越多。(3)裴李岗时期聚落等级规模之间的差异不明显。仰韶时期,聚落规模等级开始出现,龙山时期聚落规模等级进一步分化,夏商时期聚落规模等级最终形成。K-means聚类方法是早期聚落规模等级划分的科学有效的定量方法,可为区域文明化进程及聚落分布形态、聚落功能等问题研究提供重要依据。 展开更多
关键词 早期聚落 规模等级 k-means聚类方法 环嵩山地区
在线阅读 下载PDF
基于改进K-means算法的不均匀光照下道路裂缝检测 被引量:21
14
作者 王德方 曾卫明 王倪传 《计算机应用与软件》 CSCD 2015年第7期244-247,300,共5页
传统的基于K-means聚类算法由于仅考虑裂缝像素值大小,导致了不均匀光照下的路面裂缝提取不精确。为提高不均匀光照下道路裂缝检测的效率和准确性,提出一种改进的K-means聚类算法与区域生长法结合的道路裂缝图像检测算法。该算法首先运... 传统的基于K-means聚类算法由于仅考虑裂缝像素值大小,导致了不均匀光照下的路面裂缝提取不精确。为提高不均匀光照下道路裂缝检测的效率和准确性,提出一种改进的K-means聚类算法与区域生长法结合的道路裂缝图像检测算法。该算法首先运用改进的K-means聚类算法对不均匀光照下的路面裂缝进行粗定位;然后采用区域生长法对粗定位的裂缝图像进行准确提取;最后采用形态学算法进行优化处理以提升裂缝分割效果。该算法把路面裂缝位置信息加入到聚类算法中,并结合裂缝的像素值来综合判断裂缝区域,从而克服了图像采集过程中由于光照不均或物体表面反光等原因造成的裂缝信息识读困难的问题。实验结果表明,与传统K-means算法相比,该方法对光照不均的路面裂缝提取在处理效果和性能方面均有明显提升,同时抑制了噪声的干扰,为路面裂缝参数的提取及病害程度的定性分析奠定了基础。 展开更多
关键词 k-means聚类算法 裂缝噪声 不均匀光照 区域生长法 裂缝位置信息
在线阅读 下载PDF
基于复合形的K-means优化聚类算法研究 被引量:2
15
作者 赵凯 李声晋 赵锋 《郑州大学学报(理学版)》 CAS 2008年第4期44-47,共4页
为了克服K-means算法受初始点影响大、结果稳定性差的不足,提出了一种新的K-means优化聚类算法.介绍了复合形法的基本原理并将其做了一定修改以适用于K-means优化聚类,推导了一系列用于计算的公式,给出了具体的实现步骤与方法.通过算例... 为了克服K-means算法受初始点影响大、结果稳定性差的不足,提出了一种新的K-means优化聚类算法.介绍了复合形法的基本原理并将其做了一定修改以适用于K-means优化聚类,推导了一系列用于计算的公式,给出了具体的实现步骤与方法.通过算例说明,与其他几种方法相比,该方法结果稳定,计算效率较高,有着很好的推广应用前景. 展开更多
关键词 复合形 数据挖掘 k-means聚类
在线阅读 下载PDF
基于k-means聚类和模糊神经网络的母线负荷态势感知 被引量:25
16
作者 蒋铁铮 尹晓博 +2 位作者 马瑞 杨海晶 李朝晖 《电力科学与技术学报》 CAS 北大核心 2020年第3期46-54,共9页
为顺应电力调度计划朝更精细化方向发展,提出基于k-means聚类和模糊神经网络的母线负荷态势感知方法。首先提出表征母线负荷状态参量和体现其状态参量变化趋势的母线负荷静动态势概念,然后建立母线负荷态势感知方法,包括:在态势觉察阶段... 为顺应电力调度计划朝更精细化方向发展,提出基于k-means聚类和模糊神经网络的母线负荷态势感知方法。首先提出表征母线负荷状态参量和体现其状态参量变化趋势的母线负荷静动态势概念,然后建立母线负荷态势感知方法,包括:在态势觉察阶段,对母线历史负荷态势信息进行采集和处理;在态势理解阶段,采用基于手肘法的k-means聚类算法对考虑母线环境因素和负荷因素的母线历史负荷态势信息进行聚类分析;在态势预测阶段,采用费歇尔判别分析针对待测日动态势信息进行分类预测匹配待测日所属历史数据聚类类别,将所属类别的历史静态势数据代入模糊神经网络预测模型,建立基于k-means聚类的模糊神经网络预测方法,对待感知日母线负荷进行态势预测。最后应用该文方法进行算例仿真,结果表明所提方法的有效性和可行性,同时与传统模糊神经网络预测相比,该文母线负荷态势感知方法具有更高的态势预测精度。 展开更多
关键词 母线负荷态势感知 手肘法 k-means聚类 费歇尔判别分析 模糊神经网络
在线阅读 下载PDF
结合无人机载LiDAR点云法向量的K-means++聚类精简 被引量:6
17
作者 李沛婷 赵庆展 +1 位作者 田文忠 马永建 《国土资源遥感》 CSCD 北大核心 2020年第2期103-110,共8页
点云精简可有效降低无人机载LiDAR数据量,对后期点云存储和快速处理具有重要意义。采用K-means++方法对点云法向量进行聚类,以实现点云精简。首先,利用回波次数去除多次回波点云,在使用零-均值标准化方法对点云属性归一化后,利用KD树(K-... 点云精简可有效降低无人机载LiDAR数据量,对后期点云存储和快速处理具有重要意义。采用K-means++方法对点云法向量进行聚类,以实现点云精简。首先,利用回波次数去除多次回波点云,在使用零-均值标准化方法对点云属性归一化后,利用KD树(K-dimension tree)建立点云索引构建点云K邻域;然后,采用主成分分析法估算点云法向量,借助肘方法确定最佳聚类数目;最终,通过K-means++聚类方法实现点云精简。将精简结果生成Delaunay三角网并转换为栅格数据,通过相关系数验证方法的有效性。结果表明:针对研究区69544个点云数据,该方法可去除多次回波点云7722个;对点云法向量进行聚类数目为8的K-means++聚类,对应的精简率为分别为81.389%,81.833%和85.369%时效果较优;精简后生成Delaunay三角网的时间远低于精简前,且当按81.833%进行精简处理时,相关系数最高,为0.890。该方法可为点云精简提供参考。 展开更多
关键词 点云K邻域 点云法向量 k-means++聚类 DELAUNAY三角网
在线阅读 下载PDF
命名实体的网络话题K-means动态检测方法 被引量:4
18
作者 刘素芹 柴松 《智能系统学报》 2010年第2期122-126,共5页
针对传统的网络话题检测方法在文本特征表示方面的不足及K-means聚类算法面临的问题,提出了一种基于命名实体的网络话题K-means动态检测方法.该方法对传统话题检测的特征表示方法进行了改进,用命名实体和文本特征词相结合表示文本特征,... 针对传统的网络话题检测方法在文本特征表示方面的不足及K-means聚类算法面临的问题,提出了一种基于命名实体的网络话题K-means动态检测方法.该方法对传统话题检测的特征表示方法进行了改进,用命名实体和文本特征词相结合表示文本特征,用命名实体对文本表示的贡献大小表示命名实体的权重;另外,利用自适应技术对K-means聚类算法中的K值进行自收敛,对K-means聚类算法进行了优化,利用K值的动态选取来实现网络话题的动态检测.实验结果表明,该方法较好地区分了相似话题,有效提高了话题检测的性能. 展开更多
关键词 命名实体 网络话题 动态检测 K—means聚类 自相似度 话题向量
在线阅读 下载PDF
基于K-means聚类算法的盾构掘进参数设定方法研究 被引量:6
19
作者 胡珉 樊杰 《隧道建设(中英文)》 北大核心 2018年第11期1772-1777,共6页
盾构掘进参数的合理设定是保障盾构隧道施工质量和安全的基础。为实现掘进参数的准确设定,基于典型工程类比设定理论,将K-means聚类算法与经验公式设定法相结合,提出盾构掘进参数类比设定法(SAPAS),实现典型工程工况掘进参数的自动提取... 盾构掘进参数的合理设定是保障盾构隧道施工质量和安全的基础。为实现掘进参数的准确设定,基于典型工程类比设定理论,将K-means聚类算法与经验公式设定法相结合,提出盾构掘进参数类比设定法(SAPAS),实现典型工程工况掘进参数的自动提取和匹配。与传统的经验公式法相比,SAPAS改善了经验公式的实际使用效果,能够更准确地进行参数设定,有利于提高施工质量和安全。通过在上海轨道交通的部分工程中进行实践,取得了良好的施工效果。 展开更多
关键词 盾构掘进参数 k-means聚类算法 经验公式设定法 类比设定法
在线阅读 下载PDF
K-means聚类方法在黑龙江省低山丘陵区坡耕地类型区划分中的应用 被引量:2
20
作者 吕志学 孙雪文 刘凤飞 《水土保持通报》 CSCD 2015年第1期124-127,共4页
[目的]探索K-means聚类方法在黑龙江省坡耕地类型区划分上应用的可行性,为各市(县)坡耕地水土保持规划和治理提供依据。[方法]利用K-means聚类方法对黑龙江省70个低山丘陵区市(县)进行科学区划。[结果]低山区市(县)共21个,丘陵区县市共4... [目的]探索K-means聚类方法在黑龙江省坡耕地类型区划分上应用的可行性,为各市(县)坡耕地水土保持规划和治理提供依据。[方法]利用K-means聚类方法对黑龙江省70个低山丘陵区市(县)进行科学区划。[结果]低山区市(县)共21个,丘陵区县市共49个。[结论]所选16个分类指标的显著性均小于0.05,证明分类结果令人满意。 展开更多
关键词 k-means聚类方法 低山丘陵区 坡耕地 类型区划分
在线阅读 下载PDF
上一页 1 2 103 下一页 到第
使用帮助 返回顶部