The dispersion of K\-2CO\-3 on \%γ\%\|Al\-2O\-3 and the adsorption performance of K\-2CO\-3/\%γ\%\|Al\-2O\-3 to SO\-2 are investigated.The results show that K\-2CO\-3 can disperse onto the surface of \%γ\%\|Al\-2O\...The dispersion of K\-2CO\-3 on \%γ\%\|Al\-2O\-3 and the adsorption performance of K\-2CO\-3/\%γ\%\|Al\-2O\-3 to SO\-2 are investigated.The results show that K\-2CO\-3 can disperse onto the surface of \%γ\%\|Al\-2O\-3 as a monolayer and the dispersion threshold is 0.31\[\%m\%(K\-2CO\-3)/\%m\%(\%γ\%\|Al\-2O\-3), \%m\%/g\], which is close to the theoretical value calculated by assuming a bidentate vertical dispersion model of CO\-2 on the \%γ\%\|Al\-2O\-3 surface . The SO\-2 adsorption\|capacity on K\-2CO\-3/\%γ\%\|Al\-2O\-3 sample increases with the K\-2CO\-3 loading and reaches an extremum at its threshold. The adsorbent conversion of K\-2CO\-3/\%γ\%\|Al\-2O\-3 at the threshold is up to 72%. When the loading is higher than the threshold, the SO\-2 adsorption capacity decreases at first, then increases again. This phenomenon is caused by the reaction between SO\-2 and the bulk phase of K\-2CO\-3 crystallites. The sample decreases with the loading, and the sample with \{0.10\}\[\%m\%(K\-2CO\-3)/\%m(γ\%\|Al\-2O\-3), \%m\%/g\] loading shows the highest regeneration percentage of 63%. Compared with Na\-2CO\-3/\%γ\%\|Al\-2O\-3, K\-2CO\-3/\%γ\%\|Al\-2O\-3 might have some advantages.展开更多
Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2...Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical.展开更多
文摘The dispersion of K\-2CO\-3 on \%γ\%\|Al\-2O\-3 and the adsorption performance of K\-2CO\-3/\%γ\%\|Al\-2O\-3 to SO\-2 are investigated.The results show that K\-2CO\-3 can disperse onto the surface of \%γ\%\|Al\-2O\-3 as a monolayer and the dispersion threshold is 0.31\[\%m\%(K\-2CO\-3)/\%m\%(\%γ\%\|Al\-2O\-3), \%m\%/g\], which is close to the theoretical value calculated by assuming a bidentate vertical dispersion model of CO\-2 on the \%γ\%\|Al\-2O\-3 surface . The SO\-2 adsorption\|capacity on K\-2CO\-3/\%γ\%\|Al\-2O\-3 sample increases with the K\-2CO\-3 loading and reaches an extremum at its threshold. The adsorbent conversion of K\-2CO\-3/\%γ\%\|Al\-2O\-3 at the threshold is up to 72%. When the loading is higher than the threshold, the SO\-2 adsorption capacity decreases at first, then increases again. This phenomenon is caused by the reaction between SO\-2 and the bulk phase of K\-2CO\-3 crystallites. The sample decreases with the loading, and the sample with \{0.10\}\[\%m\%(K\-2CO\-3)/\%m(γ\%\|Al\-2O\-3), \%m\%/g\] loading shows the highest regeneration percentage of 63%. Compared with Na\-2CO\-3/\%γ\%\|Al\-2O\-3, K\-2CO\-3/\%γ\%\|Al\-2O\-3 might have some advantages.
基金funded by the National Key Research and Development Program of China(2020YFD0900902)Zhejiang Province Public Welfare Technology Application Research Project(LGJ21C20001)Zhejiang Provincial Key Research and Development Project of China(2019C02076 and 2019C02075)。
文摘Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical.