期刊文献+
共找到1,347篇文章
< 1 2 68 >
每页显示 20 50 100
DTWAWKNN驱动的蓝牙/WiFi指纹定位方法
1
作者 杨明 纪冬华 《导航定位学报》 北大核心 2025年第3期189-197,共9页
针对蓝牙/无线保真(WiFi)指纹定位效果差、算法复杂度高等问题,提出一种动态时间规整辅助加权K近邻(DTWAWKNN)驱动的蓝牙/WiFi指纹定位方法:离线阶段,通过动态时间规整(DTW)算法计算不等维度的蓝牙、WiFi和蓝牙/WiFi混合指纹之间的相似... 针对蓝牙/无线保真(WiFi)指纹定位效果差、算法复杂度高等问题,提出一种动态时间规整辅助加权K近邻(DTWAWKNN)驱动的蓝牙/WiFi指纹定位方法:离线阶段,通过动态时间规整(DTW)算法计算不等维度的蓝牙、WiFi和蓝牙/WiFi混合指纹之间的相似度,并基于加权K近邻(WKNN)实现匹配定位,然后以蓝牙、WiFi及蓝牙/WiFi混合指纹库与蓝牙、WiFi及蓝牙/WiFi混合指纹的匹配结果为定位特征,构建基于多类型指纹匹配定位结果的离线定位指纹库;在线阶段,基于DTWAWKNN实现蓝牙、WiFi和蓝牙/WiFi混合指纹之间的匹配定位,获取基于多类型指纹匹配定位结果的在线定位指纹,再基于WKNN算法实现离线定位指纹库和在线定位指纹的匹配定位。实验结果表明,提出方法的定位效果远优于WKNN、随机森林(RF)和支持向量机(SVM),定位精度可至少提高67.74%,定位稳定性最少提高54.51%,算法复杂度至少降低77.9%。 展开更多
关键词 蓝牙 无线保真(WiFi) 指纹定位 动态时间规整(DTW) 加权k近邻(Wknn)
在线阅读 下载PDF
一种基于KNN和随机仿射的边界样本合成过采样方法 被引量:1
2
作者 冷强奎 孙薛梓 孟祥福 《智能系统学报》 北大核心 2025年第2期329-343,共15页
过采样是处理不平衡数据分类问题的有效策略。本文提出了一种基于K近邻(K-nearest neighbor,KNN)和随机仿射的边界样本合成过采样方法,用于改进现有过采样方法的种子样本选择阶段和合成样本生成阶段。首先,引入三近邻理论,建立样本间有... 过采样是处理不平衡数据分类问题的有效策略。本文提出了一种基于K近邻(K-nearest neighbor,KNN)和随机仿射的边界样本合成过采样方法,用于改进现有过采样方法的种子样本选择阶段和合成样本生成阶段。首先,引入三近邻理论,建立样本间有效的内在近邻关系,并去除数据集中的噪声,以降低后续分类器的过拟合风险。其次,准确识别那些难以学习且包含丰富信息的少数类边界样本,并将其用作采样种子。最后,利用局部随机仿射代替线性插值机制,在原始数据的近似流形中均匀地生成合成样本。相比于传统过采样方法,本文方法能更充分挖掘数据集中的重要边界信息,从而为分类器提供更多辅助以改善其分类性能。在18个基准数据集上,与8种经典采样方法(结合4种不同分类器)进行了大量对比实验。结果表明,本文所提方法获得了更高的F1分数和几何均值(G-mean),可以更为有效地解决不平衡数据分类问题。此外,统计分析也证实该方法具有更高的弗里德曼排名(Friedman ranking)。 展开更多
关键词 k近邻 线性插值 边界样本 自然分布 过采样 三近邻理论 随机仿射变换 不平衡分类
在线阅读 下载PDF
基于中值和滑动窗口融合滤波的WKNN定位算法
3
作者 李小年 谭方 +3 位作者 齐斐 杨永锋 姜汗涛 李芳芳 《传感器与微系统》 北大核心 2025年第5期142-145,共4页
针对室内定位中接收信号强度指示(RSSI)受到环境干扰波动大,使得定位精度低且不稳定,但是单一滤波算法较难实现有效滤波的问题,本文提出基于中值和滑动窗口融合滤波的加权K最近邻(WKNN)定位算法,该算法分别用中值和滑动窗口对RSSI值进... 针对室内定位中接收信号强度指示(RSSI)受到环境干扰波动大,使得定位精度低且不稳定,但是单一滤波算法较难实现有效滤波的问题,本文提出基于中值和滑动窗口融合滤波的加权K最近邻(WKNN)定位算法,该算法分别用中值和滑动窗口对RSSI值进行滤波,再用卡尔曼算法对两种滤波结果进行融合,实现融合滤波,最后用基于动态权重的WKNN算法实现定位。实验结果表明,经过融合滤波处理RSSI后,定位的平均误差为0.946 m,定位精度优于单一滤波且更稳定。 展开更多
关键词 室内定位 融合滤波 接收信号强度指示 加权k最近邻
在线阅读 下载PDF
机载激光雷达数据与机器学习算法的森林蓄积量估测模型构建精度评价——基于KNN、XGBoost与RF模型反演算法
4
作者 潘自辉 肖正利 +5 位作者 黄光体 赵文纯 张流洋 刘晓阳 肖箫 林浩然 《湖北林业科技》 2025年第2期34-44,50,共12页
基于激光雷达系统获取数据,旨在探索建立一个适用于湖北省的混合树种蓄积量估测模型。研究区涵盖9个市州及15个县市区386个样地(小班),涉及3种森林类型(阔叶林、针叶林和针阔混交林),划分为5个植被区,分别为大别山桐柏山丘陵低山、鄂西... 基于激光雷达系统获取数据,旨在探索建立一个适用于湖北省的混合树种蓄积量估测模型。研究区涵盖9个市州及15个县市区386个样地(小班),涉及3种森林类型(阔叶林、针叶林和针阔混交林),划分为5个植被区,分别为大别山桐柏山丘陵低山、鄂西北山地丘陵、鄂东南低山丘陵、江汉平原湖泊和鄂西南山地;从点云数据中提取森林参数特征变量,结合实地调查数据,分别采用机器算法KNN、XGBoost和RF模型对森林蓄积量进行估测,采用决定系数评价模型估测精度,对估测结果进行比较分析。结果表明:(1)RF模型的估测值与实际值较为接近,精度高于KNN和XGBoost模型;(2)不同地貌区域的森林类型估测精度存在差异,表现为针叶林估测精度高于阔叶林;估测精度与林分郁闭度、林龄、起源等因子存在相关性,林分郁闭度较高时,估测精度较高;中龄、近熟林及过熟林估测精度较高,人工林的精度高于天然林;(3)蓄积量估测值精度与实测值的区间相关,实测值趋于一定低值与高值区间时,估测精度降低。通过激光雷达数据的反演结果与地面调查数据验证,反映了模型的准确度,促进林业调查与激光雷达融合运用,需进一步比较多种模型,并探索森林分布、林木结构特征、林分因子等之间影响估测精度的相关因素。 展开更多
关键词 激光雷达 森林蓄积量 模型反演 k-近邻算法 极端梯度提升 随机森林
在线阅读 下载PDF
基于K互近邻与核密度估计的DPC算法 被引量:1
5
作者 周玉 夏浩 +1 位作者 刘虹瑜 白磊 《北京航空航天大学学报》 北大核心 2025年第6期1978-1990,共13页
快速搜索和发现密度峰值聚类(DPC)算法是一种基于密度的聚类算法。该算法不需要迭代和过多的设定参数,但由于计算局部密度时没有考虑数据的局部结构,导致无法识别簇密度小的聚类中心。针对此问题,提出基于K互近邻(KN)和核密度估计(KDE)... 快速搜索和发现密度峰值聚类(DPC)算法是一种基于密度的聚类算法。该算法不需要迭代和过多的设定参数,但由于计算局部密度时没有考虑数据的局部结构,导致无法识别簇密度小的聚类中心。针对此问题,提出基于K互近邻(KN)和核密度估计(KDE)的DPC(KKDPC)算法。通过K近邻和核密度估计方法得到数据点的K互近邻数量和局部核密度;将K互近邻数量与局部核密度进行加和获得新的局部密度;根据数据点的局部密度得到相对距离,并通过构建决策图选取聚类中心及分配非中心点。利用人工数据集和真实数据集进行实验,并与DPC、基于密度的噪声空间聚类应用(DBSCAN)、K-means、模糊C均值聚类算法(FCM)、基于K近邻的DPC(DPCKNN)、近邻优化DPC(DPC-NNO)、基于模糊加权共享邻居的DPC(DPC-FWSN)算法进行对比。通过计算调整互信息(AMI)、调整兰德指数(ARI)、归一化互信息(NMI)来验证KKDPC算法的性能。实验结果表明:KKDPC算法能更加准确地识别聚类中心,有效地提高聚类精度。 展开更多
关键词 聚类算法 密度峰值 k近邻 k互近邻 核密度估计
在线阅读 下载PDF
基于密文KNN检索的室内定位隐私保护算法 被引量:3
6
作者 欧锦添 乐燕芬 施伟斌 《数据采集与处理》 CSCD 北大核心 2024年第2期456-470,共15页
在定位请求服务中,如何保护用户的位置隐私和位置服务提供商(Localization service provider,LSP)的数据隐私是关系到WiFi指纹定位应用的一个具有挑战性的问题。基于密文域的K-近邻(K-nearest neighbors,KNN)检索,本文提出了一种适用于... 在定位请求服务中,如何保护用户的位置隐私和位置服务提供商(Localization service provider,LSP)的数据隐私是关系到WiFi指纹定位应用的一个具有挑战性的问题。基于密文域的K-近邻(K-nearest neighbors,KNN)检索,本文提出了一种适用于三方的定位隐私保护算法,能有效提升对LSP指纹信息隐私的保护强度并降低计算开销。服务器和用户分别完成对指纹信息和定位请求的加密,而第三方则基于加密指纹库和加密定位请求,在隐私状态下完成对用户的位置估计。所提算法把各参考点的位置信息随机嵌入指纹,可避免恶意用户获取各参考点的具体位置;进一步利用布隆滤波器在隐藏接入点信息的情况下,第三方可完成参考点的在线匹配,实现对用户隐私状态下的粗定位,可与定位算法结合降低计算开销。在公共数据集和实验室数据集中,对两种算法的安全、开销和定位性能进行了全面的评估。与同类加密算法比较,在不降低定位精度的情况下,进一步增强了对数据隐私的保护。 展开更多
关键词 隐私保护 指纹定位 密文k-近邻检索 布隆滤波器 WIFI
在线阅读 下载PDF
应用非线性KNN数据搜索的三维叠前自由表面多次波预测 被引量:2
7
作者 谢飞 朱成宏 +1 位作者 高鸿 徐蔚亚 《石油地球物理勘探》 EI CSCD 北大核心 2024年第3期424-432,共9页
自由表面多次波预测(SRMP)是自由表面多次波消除(SRME)以及成像的重要环节。SRME技术尽管有效,但理论上需要规则而密集的地震数据采集方式。然而实际炮点、检波点空间分布稀疏,地震数据不能满足SRME理论要求,常规的做法是在SRME之前将... 自由表面多次波预测(SRMP)是自由表面多次波消除(SRME)以及成像的重要环节。SRME技术尽管有效,但理论上需要规则而密集的地震数据采集方式。然而实际炮点、检波点空间分布稀疏,地震数据不能满足SRME理论要求,常规的做法是在SRME之前将地震数据规则化。为了避免数据规则化环节,首先建立索引数据树管理三维叠前地震数据,并采用基于树形数据结构的非线性K近邻算法(KNN)从地震数据中实时搜索两道近似地震数据;然后利用动校—反动校消除实时搜索得到的近似地震道与实际地震道之间的旅行时误差;由以上两步获得单道孔径内任意向下反射点(DRP)所需要的两道地震数据用于SRMP。单道孔径内任意DRP均可由SRMP预测对应的多次波模型道,叠加所有DRP对应的预测结果可获得该道稳定的多次波模型数据。将该方法用于扩展的三维Pluto模型数据,结果表明该方法能有效预测三维自由表面多次波,从而保证高质量的自由表面多次波衰减结果。实际地震数据的应用证明了方法的实用性。 展开更多
关键词 自由表面多次波 预测 消除 索引数据树 非线性k近邻(knn)算法
在线阅读 下载PDF
KMDW和ISVDD方法在钻头磨损状态识别中的应用
8
作者 郝旺身 娄本池 +4 位作者 董辛旻 王林恒 朱春辉 陈世金 王亚坤 《重庆理工大学学报(自然科学)》 北大核心 2025年第7期179-186,共8页
为识别钻头的磨损状态,解决多分类过程中支持向量数据描述(SVDD)对混叠样本识别精度差的问题,提出一种基于结合K均值密度权重(KMDW)聚类和改进SVDD(ISVDD)的方法。采用小波包分解多尺度排列熵值(WPD-MPE)方法提取特征向量;结合KMDW和SVD... 为识别钻头的磨损状态,解决多分类过程中支持向量数据描述(SVDD)对混叠样本识别精度差的问题,提出一种基于结合K均值密度权重(KMDW)聚类和改进SVDD(ISVDD)的方法。采用小波包分解多尺度排列熵值(WPD-MPE)方法提取特征向量;结合KMDW和SVDD模型进行故障分类,对混叠样本采用K近邻隶属度值进行识别,并采用改进的蝴蝶优化算法(IBOA)优化SVDD模型参数。在标准数据集上验证所提方法的优越性,结果表明:加入K近邻隶属度值可使F值和准确率分别提升6.36%和6.59%;KMDW相比K均值聚类方法的ARI值和NMI值分别提升10.01%和10.75%,能够达到更好的聚类效果;经蝴蝶优化算法改进后模型识别精度进一步提高。将所提方法应用于钻头磨损状态的识别,识别准确率达到92.83%,证明其具有较好的识别精度和通用性。 展开更多
关键词 SVDD k均值密度权重聚类 蝴蝶优化算法 k近邻算法 钻头磨损状态识别
在线阅读 下载PDF
基于RSA模型和改进K-means算法的电商行业客户细分
9
作者 杨静 《计算机应用与软件》 北大核心 2025年第8期125-131,172,共8页
针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻... 针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻和密度峰值聚类的K-means初始聚类中心选取方法,优化传统K-means算法实现客户细分。通过选取的标准数据集和某零售公司在线交易的真实数据进行实验验证,证明了RSA模型和改进K-means算法具有更加优异的性能。 展开更多
关键词 RSA模型 客户细分 k-MEANS算法 密度峰值聚类 k近邻
在线阅读 下载PDF
基于AKNN异常检验与ADPC聚类的低压台区拓扑识别方法 被引量:3
10
作者 史子轶 夏向阳 +3 位作者 刘佳斌 谷阳洋 王玉龙 洪佳瑶 《中国电力》 CSCD 北大核心 2024年第5期168-177,共10页
低压台区拓扑信息的准确记录是进行台区线损分析、三相不平衡治理等工作的基础。针对目前拓扑档案排查成本高且效率低的问题,提出一种基于自适应k近邻(adaptive k nearest neighbor,AKNN)异常检验和自适应密度峰值(adaptive density pea... 低压台区拓扑信息的准确记录是进行台区线损分析、三相不平衡治理等工作的基础。针对目前拓扑档案排查成本高且效率低的问题,提出一种基于自适应k近邻(adaptive k nearest neighbor,AKNN)异常检验和自适应密度峰值(adaptive density peaks clustering,ADPC)聚类的低压台区拓扑识别方法。该方法利用动态时间弯曲(dynamic time warping,DTW)距离度量低压台区用户间电压序列的相似性,通过AKNN异常检验算法检验并校正异常的用户与变压器之间的关系(简称“户变关系”),在得到正确户变关系的基础上,采用ADPC聚类算法对台区内用户进行相位识别;最后,通过实际台区算例分析验证了该方法不需要人为设置参数,能有效实现低压台区的拓扑识别,具有较高的适用性与准确性。 展开更多
关键词 低压台区 户变关系 相位识别 自适应k近邻 自适应密度峰值
在线阅读 下载PDF
坝肩岩体质量LDA-KNN分类模型 被引量:2
11
作者 荀鹏 李娟 +2 位作者 魏玉峰 李常虎 范文东 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期281-290,302,共11页
工程岩体质量分级评价对工程的安全、设计、经济效益等有重要影响。针对当前岩级划分方法中存在不确定性,人为因素干扰和忽视了传统定性分级中对岩体质量评价的重要性等问题,本文通过在工程实际中搜集样本建立数据库,从工程的实际需求出... 工程岩体质量分级评价对工程的安全、设计、经济效益等有重要影响。针对当前岩级划分方法中存在不确定性,人为因素干扰和忽视了传统定性分级中对岩体质量评价的重要性等问题,本文通过在工程实际中搜集样本建立数据库,从工程的实际需求出发,选择岩体完整性系数(K v)、结构面间距(D)、岩石质量指标(RQD)等合适的评价指标,通过引入LDA(Linear Discriminant Analysis)降维方法和K近邻分析(K-Nearest-Neighbor,KNN)相结合的多分类模型,实现了岩体的非线性分级预测。通过定性定量相结合实现了岩体多因素,多指标的综合分级,并解决了多指标判断时信息冗余,复杂程度高的问题。与其他判别方案相比较,模型得出的结果准确率高,符合工程实际,减少了人为因素的影响,体现出较强的预测判别能力。该研究为水电站大坝坝肩处的平硐岩体质量划分提出了一种可行的预测方案。 展开更多
关键词 岩体结构 岩体质量分级 线性降维 k近邻算法 分类模型
在线阅读 下载PDF
基于IKNN和LOF的变压器回复电压数据清洗方法研究 被引量:3
12
作者 陈啸轩 邹阳 +3 位作者 翁祖辰 林锦茄 林昕亮 张云霄 《电子测量与仪器学报》 CSCD 北大核心 2024年第2期92-100,共9页
基于回复电压极化谱提取特征参量是目前广泛应用的变压器油纸绝缘状态评估方法,但极化谱易受工况干扰、人工失误等因素影响而出现特征数据异常的情况,严重降低评估准确性。针对上述问题,该文提出了一种基于局部离群因子(LOF)和改进K最近... 基于回复电压极化谱提取特征参量是目前广泛应用的变压器油纸绝缘状态评估方法,但极化谱易受工况干扰、人工失误等因素影响而出现特征数据异常的情况,严重降低评估准确性。针对上述问题,该文提出了一种基于局部离群因子(LOF)和改进K最近邻(IKNN)的回复电压数据清洗方法。首先,选取回复电压极化谱的回复电压极大值Urmax、初始斜率Sr与主时间常数tcdom作为老化特征参量,并基于LOF算法对非标准极化谱中的异常特征量数据进行识别与筛除。其次,利用模糊C均值(FCM)聚类算法减小噪声点对KNN算法的干扰,并通过加权欧氏距离标度突出各特征量间的关联性,进而构建出基于IKNN的数据填补模型架构以实现特征缺失数据的填补。最后,代入多组实测数据验证所提数据清洗方法的实效性。结果表明,数据清洗后的状态评估准确率相较于原有数据上升了50%左右,有效提高了变压器回复电压数据质量,为准确感知变压器运行状况奠定坚实的基础。 展开更多
关键词 油纸绝缘 特征数据清洗 局部离群因子算法 回复电压极化谱 改进k最近邻算法
在线阅读 下载PDF
基于PCA+KNN和kernal-PCA+KNN算法的废旧纺织物鉴别 被引量:2
13
作者 李宁宁 刘正东 +2 位作者 王海滨 韩熹 李文霞 《分析测试学报》 CAS CSCD 北大核心 2024年第7期1039-1045,共7页
该研究采集了15类废旧纺织物的4 998张近红外谱图,以7∶3的比例分为训练集和验证集,并分别采用主成分分析(PCA)与核主成分分析(kernal-PCA)两种不同降维方法对数据进行降维,并选用余弦相似度(cosine)核作为kernal-PCA的最佳核函数,最后... 该研究采集了15类废旧纺织物的4 998张近红外谱图,以7∶3的比例分为训练集和验证集,并分别采用主成分分析(PCA)与核主成分分析(kernal-PCA)两种不同降维方法对数据进行降维,并选用余弦相似度(cosine)核作为kernal-PCA的最佳核函数,最后分别将PCA和kernal-PCA降维处理后的数据进行k-近邻算法(KNN)训练。结果表明,kernal-PCA+KNN的模型准确率(95.17%)优于PCA+KNN模型的准确率(92.34%)。研究表明,kernal-PCA+KNN算法可以实现15类废旧纺织物识别准确率的提升,为废旧纺织物在线近红外自动分拣提供有力的技术支撑。 展开更多
关键词 废旧纺织物 主成分分析(PCA) 核主成分分析(kernel-PCA) k-近邻算法(knn) 分类识别
在线阅读 下载PDF
基于PCA-BOA-KNN模型的水下爆炸舰船结构破损评估 被引量:1
14
作者 梁潇帝 刘寅东 《中国舰船研究》 CSCD 北大核心 2024年第3期150-157,共8页
[目的]为解决水下爆炸作用下舰船结构破口损伤评估问题,建立一种基于PCA-BOA-KNN模型的破口预报方法。[方法]首先,分别建立五舱段和七舱段有限元模型,对21组水下爆炸工况进行爆炸仿真分析;然后,基于主成分分析(PCA)法,对加速度峰值、速... [目的]为解决水下爆炸作用下舰船结构破口损伤评估问题,建立一种基于PCA-BOA-KNN模型的破口预报方法。[方法]首先,分别建立五舱段和七舱段有限元模型,对21组水下爆炸工况进行爆炸仿真分析;然后,基于主成分分析(PCA)法,对加速度峰值、速度峰值、位移峰值、应力峰值和超压峰值进行降维处理,得到2个本征特征量;最后,将由主成分分析法得到的结果代入贝叶斯网络优化(BOA)的KNN模型,通过建立的破口预报模型,预测一组工况下舰船不同剖面处的破口情况。[结果]结果显示,通过主成分分析法提取的前2个因子的累计贡献率为85.165%,这2个因子可代表5个特征量的主要信息;基于PCA-BOAKNN模型的破口预报结果与仿真结果基本一致。[结论]所提的预报模型方法对舰船结构破口预报有效,对于不同主尺度船体结构破口预报有一定的参考价值。 展开更多
关键词 结构分析 主成分分析 knn算法 水下爆炸
在线阅读 下载PDF
基于KNN-TCN模型的蒸发皿蒸发量预测研究 被引量:3
15
作者 谢育珽 郑翔天 +6 位作者 史俊才 刘萍 申文明 程文飞 李新华 杨静 邢云飞 《人民黄河》 CAS 北大核心 2024年第6期113-118,125,共7页
蒸发量的精确预测对合理开发利用水资源、旱涝变化趋势研究和农作物灌溉用水量的估算具有十分重要的意义。选取我国北方地区14个地面国际交换站观测的7项气象数据,以时间卷积网络(TCN)模型为基础模型,运用K-近邻(KNN)算法对蒸发皿蒸发... 蒸发量的精确预测对合理开发利用水资源、旱涝变化趋势研究和农作物灌溉用水量的估算具有十分重要的意义。选取我国北方地区14个地面国际交换站观测的7项气象数据,以时间卷积网络(TCN)模型为基础模型,运用K-近邻(KNN)算法对蒸发皿蒸发量的空间因素进行筛选,构建KNN-TCN蒸发皿蒸发量预测模型,并利用平均绝对误差、均方根误差和判定系数3项指标对目标站点的蒸发量预测精度进行评价。结果表明:1)KNN-TCN模型预测结果明显优于LSTM模型;2)相比基础TCN模型,KNN-TCN模型预测结果的判定系数提升了2.52%,平均绝对误差、均方根误差分别降低了23.97%、13.06%。 展开更多
关键词 蒸发皿蒸发量 时间卷积网络 k-近邻算法 空间因素
在线阅读 下载PDF
基于改进KNN近邻实体的知识图谱嵌入模型 被引量:1
16
作者 刘婕 孙更新 宾晟 《复杂系统与复杂性科学》 CAS CSCD 北大核心 2024年第2期30-37,共8页
为了更好地表示邻居节点数量较少的罕见实体,提出基于近邻实体的知识图谱嵌入模型NNKGE,使用K近邻算法获得目标实体的近邻实体作为扩展信息,并在此基础上提出RNNKGE模型,使用改进的K近邻算法获得目标实体在关系上的近邻实体,通过图记忆... 为了更好地表示邻居节点数量较少的罕见实体,提出基于近邻实体的知识图谱嵌入模型NNKGE,使用K近邻算法获得目标实体的近邻实体作为扩展信息,并在此基础上提出RNNKGE模型,使用改进的K近邻算法获得目标实体在关系上的近邻实体,通过图记忆网络对其编码生成增强的实体表示。通过对公共数据集上实验结果的分析,以上两个模型在仅使用近邻节点的情况下均实现了对基准模型(CoNE)的性能超越,缓解了数据稀疏问题并改善了知识表示性能。 展开更多
关键词 知识图谱 知识图谱嵌入 邻居节点 k近邻算法 图记忆网络
在线阅读 下载PDF
响应变量缺失下条件平均处理效应的k近邻核估计
17
作者 曾华俊 明瑞星 +2 位作者 苏培娟 黄绍航 肖敏 《数学物理学报(A辑)》 北大核心 2025年第3期992-1012,共21页
基于Neyman-Rubin潜在结果框架,构建k近邻核估计量来测度响应变量随机缺失情形下的条件平均处理效应(conditional average treatment effect,CATE),旨在评估不同处理方式对个体的影响.证明了k近邻核估计量的几乎完全收敛性和渐近正态性... 基于Neyman-Rubin潜在结果框架,构建k近邻核估计量来测度响应变量随机缺失情形下的条件平均处理效应(conditional average treatment effect,CATE),旨在评估不同处理方式对个体的影响.证明了k近邻核估计量的几乎完全收敛性和渐近正态性.数值模拟表明k近邻核估计量的表现优良,利用真实数据进行实证分析,实证结果显示k近邻核估计量具有较小的平均绝对偏差和均方根误差. 展开更多
关键词 条件平均处理效应 随机缺失 k近邻核估计量 渐近正态性
在线阅读 下载PDF
基于物理加密及KNN算法的核军控核查技术研究
18
作者 何小锁 王圣凯 +2 位作者 窦小敏 路凯凯 何庆华 《核科学与工程》 CAS CSCD 北大核心 2024年第3期660-666,共7页
现阶段军控核查技术所面临的困难在于:核查人员需要在不探测敏感信息的前提下,对被检核武器的真实性给出准确结论。本工作结合物理掩模加密技术与K近邻算法,提出一种可自主加密识别核武器身份信息的核查系统。利用Geant4搭建基于中子裂... 现阶段军控核查技术所面临的困难在于:核查人员需要在不探测敏感信息的前提下,对被检核武器的真实性给出准确结论。本工作结合物理掩模加密技术与K近邻算法,提出一种可自主加密识别核武器身份信息的核查系统。利用Geant4搭建基于中子裂变反应的物理加密辐射指纹采集装置,并通过构造多种作弊情景下的样本建立数据库,同时本研究选择KNN算法建立机器学习模型应用于未知项目的身份认证,并从鲁棒性和安全性两方面量化了该核查系统的可行性。结果表明,当样本同位素丰度由武器级铀变为较低级浓缩铀(235U的丰度由96%变为70%及以下)或者样本几何形状发生细微改变时,该系统对这两种典型的作弊情景具有优良的鉴别能力。该核查方法利用智能算法实现了核武器的自主认证,提高效率的同时有效规避了人工篡改和窥探敏感信息的风险,此外,结合物理掩模加密技术,使得敏感信息从始至终没被测量,在一定程度上降低了通过软件后门等手段作弊的风险。基于物理加密及K近邻算法的核军控核查技术能够在保护被测项目敏感信息的基础上,以较高的准确率和效率鉴定其真实性。 展开更多
关键词 核军控核查 物理加密 knn算法 随机掩模
在线阅读 下载PDF
基于K-近邻加权算法的智能站虚端子自匹配方法
19
作者 史卓鹏 孔祥敏 +1 位作者 魏佳红 宋晓帆 《计算机科学》 北大核心 2025年第S1期341-346,共6页
为解决工程设计中智能变电站虚端子回路频繁连接错误和需要重复校验等问题,提出基于K-近邻加权算法的智能站虚端子自匹配方法。通过将智能变电站的整站虚端子匹配问题分解为典型间隔和单一智能电子设备(Intelligent Electronic Device,I... 为解决工程设计中智能变电站虚端子回路频繁连接错误和需要重复校验等问题,提出基于K-近邻加权算法的智能站虚端子自匹配方法。通过将智能变电站的整站虚端子匹配问题分解为典型间隔和单一智能电子设备(Intelligent Electronic Device,IED)中的单个发送和接收虚端子匹配连接问题,引入虚端子的格式组成与连接构建数学分析模型;根据IED装置之间GOOSE和SV输入输出虚端子属性连接的距离度量,通过模拟退火优化方法增加对属性距离权重来提高算法选择近邻度,并利用K-近邻算法的分类决策规则自动匹配出对应的虚端子连接组合。通过工程测试实例验证了该算法的准确性和高效性,其提升了智能变电站不可见回路的连接准确率,能保障电网安全稳定运行。 展开更多
关键词 k-近邻加权 虚端子 自匹配 模拟退火 智能变电站 IED
在线阅读 下载PDF
集加权K近邻与卷积块注意力的三维点云语义分割
20
作者 肖剑 王晓红 +3 位作者 周润民 李炜 杨祎斐 罗季 《激光杂志》 北大核心 2025年第2期225-231,共7页
基于深度学习的点云语义分割模型在改进模型时多采用复杂度高的注意力机制,而且在提取局部深度语义特征和近邻点特征表达中存在不足。因此,提出集加权K近邻与卷积块注意力的点云语义分割模型。在动态图卷积网络架构上,设计加权K近邻算... 基于深度学习的点云语义分割模型在改进模型时多采用复杂度高的注意力机制,而且在提取局部深度语义特征和近邻点特征表达中存在不足。因此,提出集加权K近邻与卷积块注意力的点云语义分割模型。在动态图卷积网络架构上,设计加权K近邻算法以获取更有效的局部邻域;再引入通卷积块注意力处理局部邻域中特征;在卷积块注意力中,通道注意力用于加强点云通道关联,空间注意力用于感知三维空间结构并获取上下文信息及深度语义特征。实验结果表明,该模型在ShapeNet Part部件分割数据集和S3DIS室内语义分割数据集分别达到85.86%和61.2%的平均交并比,相比其他方法具有较高的分割精度。 展开更多
关键词 语义分割 三维点云 动态图卷积网络 k近邻 卷积块注意力
在线阅读 下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部