期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Effect of Joule heating on the electroosmotic microvortex and dielectrophoretic particle separation controlled by local electric field
1
作者 Bing Yan Bo Chen +1 位作者 Yongliang Xiong Zerui Peng 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第11期401-410,共10页
Dielectrophoresis(DEP)technology has become important application of microfluidic technology to manipulate particles.By using a local modulating electric field to control the combination of electroosmotic microvortice... Dielectrophoresis(DEP)technology has become important application of microfluidic technology to manipulate particles.By using a local modulating electric field to control the combination of electroosmotic microvortices and DEP,our group proposed a device using a direct current(DC)electric field to achieve continuous particle separation.In this paper,the influence of the Joule heating effect on the continuous separation of particles is analyzed.Results show that the Joule heating effect is caused by the local electric field,and the Joule heating effect caused by adjusting the modulating voltage is more significant than that by driving voltage.Moreover,a non-uniform temperature distribution exists in the channel due to the Joule heating effect,and the temperature is the highest at the midpoint of the modulating electrodes.The channel flux can be enhanced,and the enhancement of both the channel flux and temperature is more obvious for a stronger Joule heating effect.In addition,the ability of the vortices to trap particles is enhanced since a larger DEP force is exerted on the particles with the Joule heating effect;and the ability of the vortex to capture particles is stronger with a stronger Joule heating effect.The separation efficiency can also be increased because perfect separation is achieved at a higher channel flux.Parameter optimization of the separation device,such as the convective heat transfer coefficient of the channel wall,the length of modulating electrode,and the width of the channel,is performed. 展开更多
关键词 dielectrophoresis microvortices joule heating effect particle separation
在线阅读 下载PDF
CoNi nanoparticles anchored inside carbon nanotube networks by transient heating:Low loading and high activity for oxygen reduction and evolution 被引量:1
2
作者 Chengfeng Zhu Wei Yang +5 位作者 Jiangtao Di Sha Zeng Jian Qiao Xiaona Wang Bo Lv Qingwen Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期63-71,共9页
Transitional metal alloy and compounds have been developed as the low cost and efficient bifunctional electrocatalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).However,a high mass loading o... Transitional metal alloy and compounds have been developed as the low cost and efficient bifunctional electrocatalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).However,a high mass loading of these catalysts is commonly needed to achieve acceptable catalytic performance,which could cause such problems as battery weight gain,mass transport blocking,and catalyst loss.We report herein the preparation of fine CoNi nanoparticles(5-6 nm)anchored inside a nitrogendoped defective carbon nanotube network(CoNi@N-DCNT)by a transient Joule heating method.When utilized as an electrocatalyst for oxygen reduction and evolution in alkaline media,the CoNi@N-DCNT film catalyst with a very low mass loading of 0.06 mg cm^(-2) showed excellent bifunctional catalytic performance.For ORR,the onset potential(Eonset)and the half-wave potential(E_(1/2))were 0.92 V versus reversible hydrogen electrode(vs.RHE)and 0.83 V(vs.RHE),respectively.For OER,the potential at the current density(J)of 10 mA cm^(-2)(E_(10))was 1.53 V,resulting in an overpotential of 300 mV much lower than that of the commercial RuO_(2) catalyst(320 mV).The potential gap between E_(1/2) and E_(10) was as small as 0.7 V.Considering the low mass loading,the mass activity at E_(10) reached at 123.2 A g^(-1),much larger than that of the RuO_(2) catalyst and literature results of transitional metal-based bifunctional catalysts.Moreover,the CoNi@N-DCNT film catalyst showed very good long-term stability during the ORR and OER test.The excellent bifunctional catalytic performance could be attributed to the synergistic effect of the bimetal alloy. 展开更多
关键词 Transient joule heating method Carbon nanotubes Nano alloy Low loading Bifunctional catalyst
在线阅读 下载PDF
Analysis and finite element simulation of electromagnetic heating in the nitride MOCVD reactor 被引量:3
3
作者 李志明 郝跃 +3 位作者 张进成 许晟瑞 倪金玉 周小伟 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第11期5072-5077,共6页
Electromagnetic field distribution in the vertical metal organic chemical vapour deposition (MOCVD) reactor is simulated by using the finite element method (FEM). The effects of alternating current frequency, inte... Electromagnetic field distribution in the vertical metal organic chemical vapour deposition (MOCVD) reactor is simulated by using the finite element method (FEM). The effects of alternating current frequency, intensity, coil turn number and the distance between the coil turns on the distribution of the Joule heat are analysed separately, and their relations to the value of Joule heat are also investigated. The temperature distribution on the susceptor is also obtained. It is observed that the results of the simulation are in good agreement with previous measurements. 展开更多
关键词 MOCVD finite element electromagnetic heating joule heat
在线阅读 下载PDF
Bioinspired MXene-Based User-Interactive Electronic Skin for Digital and Visual Dual-Channel Sensing 被引量:7
4
作者 Wentao Cao Zheng Wang +5 位作者 Xiaohao Liu Zhi Zhou Yue Zhang Shisheng He Daxiang Cui Feng Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第7期228-245,共18页
User-interactive electronic skin(e-skin) that could convert mechanical stimuli into distinguishable outputs displays tremendous potential for wearable devices and health care applications. However, the existing device... User-interactive electronic skin(e-skin) that could convert mechanical stimuli into distinguishable outputs displays tremendous potential for wearable devices and health care applications. However, the existing devices have the disadvantages such as complex integration procedure and lack of the intuitive signal display function. Here, we present a bioinspired user-interactive e-skin, which is simple in structure and can synchronously achieve digital electrical response and optical visualization upon external mechanical stimulus. The e-skin comprises a conductive layer with a carbon nanotubes/cellulose nanofibers/MXene nanohybrid network featuring remarkable electromechanical behaviors, and a stretchable elastomer layer, which is composed of silicone rubber and thermochromic pigments. Furthermore, the conductive nanohybrid network with outstanding Joule heating performance can generate controllable thermal energy under voltage input and then achieve the dynamic coloration of silicone-based elastomer. Especially, such an innovative fusion strategy of digital data and visual images enables the e-skin to monitor human activities with evermore intuition and accuracy. The simple design philosophy and reliable operation of the demonstrated e-skin are expected to provide an ideal platform for next-generation flexible electronics. 展开更多
关键词 MXene Electronic skin Electromechanical behavior joule heating Visualization
在线阅读 下载PDF
Effect of an electrostatic field on gas adsorption and diffusion in tectonic coal 被引量:4
5
作者 Jian Kuo Lei Dongji +2 位作者 Fu Xuehai Zhang Yugui Li Hengle 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第4期607-613,共7页
The characteristics of adsorption, desorption, and diffusion of gas in tectonic coal are important for the prediction of coal and gas outbursts. Three types of coal samples, of which both metamorphic grade and degree ... The characteristics of adsorption, desorption, and diffusion of gas in tectonic coal are important for the prediction of coal and gas outbursts. Three types of coal samples, of which both metamorphic grade and degree of damage is different, were selected from Tongchun, Qilin, and Pingdingshan mines. Using a series of experiments in an electrostatic field, we analyzed the characteristics of gas adsorption and diffusion in tectonic coal. We found that gas adsorption in coal conforms to the Langmuir equation in an electrostatic field. Both the depth of the adsorption potential well and the coal molecular electroneg- ativity increases under the action of an electrostatic field. A Joule heating effect was caused by changing the coal-gas system conductivity in an electrostatic field. The quantity of gas adsorbed and AP result from competition between the depth of the adsorption potential well, the coal molecular electronegativ- ity, and the Joule heating effect. △P peaks when the three factors control behavior equally. Compared with anthracite, the impact of the electrostatic field on the gas diffusion capacity of middle and high rank coals is greater. Compared with the original coal, the gas adsorption quantity,△P, and the gas diffusion capacity of tectonic coal are greater in an electrostatic field. In addition, the smaller the particle size of tectonic coal, the larger the△P. 展开更多
关键词 Electrostatic field Tectonic coal Depth of adsorption potential well joule heating effect Initial velocity of gas diffusion
在线阅读 下载PDF
Joining of Individual Silver Nanowires via Electrical Current 被引量:3
6
作者 Arash Vafaei Anming Hu Irene A.Goldthorpe 《Nano-Micro Letters》 SCIE EI CAS 2014年第4期293-300,共8页
A procedure for joining polyol-synthesized silver nanowires in air using current-induced Joule heat welding is reported. Using a common probe station and photolithographically patterned gold electrodes, the welding pr... A procedure for joining polyol-synthesized silver nanowires in air using current-induced Joule heat welding is reported. Using a common probe station and photolithographically patterned gold electrodes, the welding process is completed using a common semiconductor analyzer. A unique two-step procedure eliminates the dielectric barrier at the point of contact without damaging the nanowires away from the junction. This procedure is designed for metal–metal contacts where a strong dielectric intermediate layer might exist, which can occur with metals prone to oxidation or corrosion in air, or as a result of the electrode deposition process. Ohmic connections are also established in cases where there is an initial gap between two nanowires. 展开更多
关键词 NANOWIRES Nanowelding joule heating
在线阅读 下载PDF
Flexible and electrically robust graphene-based nanocomposite paper with hierarchical microstructures for multifunctional wearable devices
7
作者 Zhen-Hua Tang Wei-Bin Zhu +4 位作者 Jun-Zhang Chen Yuan-Qing Li Pei Huang Kin Liao Shao-Yun Fu 《Nano Materials Science》 EI CAS CSCD 2023年第3期319-328,共10页
Multifunctional and flexible wearable devices play a crucial role in a wide range of applications,such as heath monitoring,intelligent skins,and human-machine interactions.Developing flexible and conductive materials ... Multifunctional and flexible wearable devices play a crucial role in a wide range of applications,such as heath monitoring,intelligent skins,and human-machine interactions.Developing flexible and conductive materials for multifunctional wearable devices with low-cost and high efficiency methods are highly desirable.Here,a conductive graphene/microsphere/bamboo fiber(GMB)nanocomposite paper with hierarchical surface microstructures is successfully fabricated through a simple vacuum-assisted filtration followed by thermo-foaming process.The as-prepared microstructured GMB nanocomposite paper exhibits not only a high volume electrical conductivity of~45 S/m but also an excellent electrical stability(i.e.,relative changes in resistance are less than 3%under stretching,folding,and compressing loadings)due to its unique structure features.With this microstructured nanocomposite paper as active sensing layer,microstructured pressure sensors with a high sensitivity(-4 kPa^(-1)),a wide sensing range(0–5 kPa),and a rapid response time(about 140 ms)are realized.In addition,benefitting from the outstanding electrical stability and mechanical flexibility,the microstructured nanocomposite paper is further demonstrated as a low-voltage Joule heating device.The surface temperature of the microstructured nanocomposite paper rapidly reaches over 80℃ when applying a relatively low voltage of 7 V,indicating its potential in human thermotherapy and thermal management. 展开更多
关键词 GRAPHENE Bamboo fibers MICROSPHERES Pressure sensors joule heating devices
在线阅读 下载PDF
Numerical Investigation of Flow Fields in Inductively Coupled Plasma Wind Tunnels
8
作者 喻明浩 Yusuke TAKAHASHI +3 位作者 Hisashi KIHARA Ken-ichi ABE Kazuhiko YAMADA Takashi ABE 《Plasma Science and Technology》 SCIE EI CAS CSCD 2014年第10期930-940,共11页
Numerical simulations of 10 kW and 110 kW inductively coupled plasma (ICP) wind tunnels were carried out to study physical properties of the flow inside the ICP torch and vacuum chamber with air as tile working gas.... Numerical simulations of 10 kW and 110 kW inductively coupled plasma (ICP) wind tunnels were carried out to study physical properties of the flow inside the ICP torch and vacuum chamber with air as tile working gas. Two-dimensional compressible axisymmetric Navier- Stokes (N-S) equations that took into account 11 species and 49 chemical reactions of air, were solved. A heat source model was used to describe the heating phenomenon instead of solving the electromagnetic equations. In the vacuum chamber, a four-temperature model was coupled with N-S equations. Numerical results for tile 10 kW ICP wind tunnel are presented and discussed in detail as a representative case. It was found that the plasma flow in the vacuum chamber tended to be in local thermoehemical equilibrium. To study the influence of operation conditions on the flow field, simulations were carried out for different chamber pressures and/or input powers. The computational results for the above two ICP wind tunnels were compared with corresponding experimental data. The computational and experimental results agree well, therefore the flow fields of ICP wind tunnels can be clearly understood. 展开更多
关键词 inductively coupled plasma joule heating vacuum chamber chemical reactions
在线阅读 下载PDF
Characteristics of Nanosecond Pulsed Discharges in Atmospheric Helium Microplasmas
9
作者 Manish JUGROOT 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第10期992-997,共6页
Microplasmas are very interesting due to their unique properties and achievable regimes maintained at atmospheric pressures. Due to the small scales, numerical modeling could contribute to the understanding of underly... Microplasmas are very interesting due to their unique properties and achievable regimes maintained at atmospheric pressures. Due to the small scales, numerical modeling could contribute to the understanding of underlying phenomena as it provides access to local parameters--and complements experimental global characteristics. A self-consistent formalism, applied to nanosecond pulsed atmospheric non-equilibrium helium plasmas, reveals that several successive discharges can persist as a result of a combined volume and dielectric surface effects. The valuable insights provided by the spatiotemporal simulation results show the critical importance of coupled gas and plasma dynamics--namely gas heating and electric field reversals. 展开更多
关键词 MICROPLASMAS self-consistent simulations space charge joule heating nanosecond discharges
在线阅读 下载PDF
Highly sensitive giant magnetoimpedance in a solenoid containing FeCo-based ribbon
10
作者 方允樟 许启明 +6 位作者 郑金菊 吴锋民 叶慧群 斯剑霄 郑建龙 范晓珍 杨晓红 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第3期423-427,共5页
The highly sensitive giant magneto-impedance effect in a solenoid containing a magnetic core of Fe36Co36Nb4Si4.sB19.2 (FeCo-based) ribbon under a weak magnetic field (WMF) is presented in this paper. The FeCo-base... The highly sensitive giant magneto-impedance effect in a solenoid containing a magnetic core of Fe36Co36Nb4Si4.sB19.2 (FeCo-based) ribbon under a weak magnetic field (WMF) is presented in this paper. The FeCo-based amorphous ribbon is prepared by single roller quenching and annealed with Joule heat in a flowing nitro- gen atmosphere. The giant magnetoimpedance effect in solenoid (GMIES) profiles are measured with an HP4294A impedance analyzer. The result shows that the CMIES responds to the WMF sensitively (as high as 1580 %/A.m-1). The high sensitivity can be obtained in a moderate narrow range of annealing current density (30-34 A/mm2) and closely depends on the driven current frequency. The highest sensitivity (1580 %/A.m-1) is obtained when the FeCo- based amorphous ribbon is annealed at 32 A/mm2 for 10 min and then driven with an alterning current (AC) at the frequency of 350 kHz. The highly sensitive GMIES under the WMF may result from the multiple magnetic-anisotropic structure, which is induced by the temperature gradient produced during Joule-heating the ribbon. 展开更多
关键词 giant magneto-impedance FeCo-based ribbon joule heat weak magnetic field
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部