期刊文献+
共找到90篇文章
< 1 2 5 >
每页显示 20 50 100
重构目标和多层次BVMD特征融合的SAR图像目标识别方法
1
作者 肜瑶 张洋洋 《探测与控制学报》 北大核心 2025年第1期94-101,共8页
针对SAR图像目标识别问题,从特征提取和分类器两方面,提出结合目标重构和多层次二维变分模态分解(BVMD)特征决策融合的SAR图像目标识别方法。首先,提取待识别样本目标属性散射中心集,并据此对目标进行重构用于剔除原始图像中噪声、杂波... 针对SAR图像目标识别问题,从特征提取和分类器两方面,提出结合目标重构和多层次二维变分模态分解(BVMD)特征决策融合的SAR图像目标识别方法。首先,提取待识别样本目标属性散射中心集,并据此对目标进行重构用于剔除原始图像中噪声、杂波等干扰;其次,在重构图像的基础上,采用BVMD进行分解,获取多模态表示用于描述目标多层次的细节和整体特征;最后,基于联合稀疏表示算法对多模态特征进行综合分析,根据计算得到的各类别重构误差对待识别样本的所属目标类别进行判定。基于MSTAR公开数据集的实验结果证明了提出方法的有效性。 展开更多
关键词 SAR 目标识别 变分模态分解 目标重构 联合稀疏表示
在线阅读 下载PDF
基于二维聚合经验模态分解的SAR图像目标识别方法
2
作者 肜瑶 张洋洋 《火力与指挥控制》 北大核心 2025年第6期200-205,共6页
合成孔径雷达图像特征有效性直接决定了后续目标识别性能。针对SAR特征提取和目标识别问题,采用二维聚合经验模态分解获得多层次二维固态模函数并据此设计识别方法。BEEMD对传统经验模态函数进行优化,其分解得到的BIMF可以更为稳健、有... 合成孔径雷达图像特征有效性直接决定了后续目标识别性能。针对SAR特征提取和目标识别问题,采用二维聚合经验模态分解获得多层次二维固态模函数并据此设计识别方法。BEEMD对传统经验模态函数进行优化,其分解得到的BIMF可以更为稳健、有效地反映目标特性。为了充分利用分解得到的多层次BIMF,基于联合稀疏表示对它们进行统一表征从而考察其内在相关性。根据重构结果,在各层次BIMF上计算重构误差之和进行决策。采用MSTAR数据集设置实验条件对方法进行测试。综合不同条件下的结果表明,提出方法相比现有几类SAR目标识别方法具有更强的有效性。 展开更多
关键词 合成孔径雷达 目标识别 二维聚合经验模态分解 联合稀疏表示
在线阅读 下载PDF
一种基于区域特征的SAR图像目标识别方法 被引量:2
3
作者 杨慧娉 赖小龙 刘丹 《电光与控制》 北大核心 2025年第3期76-81,共6页
针对复杂条件下合成孔径雷达(SAR)图像目标识别问题,提出联合目标和阴影区域的方法。在SAR图像中分割获取目标及其阴影区域,据此相应提取Zernike矩特征,用于描述目标的几何形状分布。目标区域及阴影均可对目标外形进行分析,两者具有较... 针对复杂条件下合成孔径雷达(SAR)图像目标识别问题,提出联合目标和阴影区域的方法。在SAR图像中分割获取目标及其阴影区域,据此相应提取Zernike矩特征,用于描述目标的几何形状分布。目标区域及阴影均可对目标外形进行分析,两者具有较强的相关性,故基于联合稀疏表示进行分类,对两者提取的Zernike矩特征矢量进行综合表征。根据联合稀疏表示输出结果,分别计算不同训练类别对目标及阴影的重构误差,并根据误差最小原则完成目标类别确认。联合目标和阴影区域能够更为全面地反映SAR图像中目标的几何形状信息,有利于增强区分不同类别的能力。以MSTAR数据样本为基础设置了标准操作条件以及型号差异、俯仰角差异和噪声干扰3类扩展操作条件,经实验验证及对比分析,结果表明了所提方法的性能优势。 展开更多
关键词 SAR图像 目标识别 目标区域 阴影 ZERNIKE矩 联合稀疏表示
在线阅读 下载PDF
稀疏表示系数相关性筛选多视角SAR目标识别方法
4
作者 陈婕 《探测与控制学报》 北大核心 2025年第2期48-54,共7页
合成孔径雷达(SAR)图像处理是获取侦察信息的重要手段,当前SAR目标识别能力不高已成为制约其有效获取侦察信息的问题。针对这一问题,通过稀疏表示分类(SRC)对单一视角进行处理,获取相应的稀疏表示系数矢量。以不同视角稀疏表示系数矢量... 合成孔径雷达(SAR)图像处理是获取侦察信息的重要手段,当前SAR目标识别能力不高已成为制约其有效获取侦察信息的问题。针对这一问题,通过稀疏表示分类(SRC)对单一视角进行处理,获取相应的稀疏表示系数矢量。以不同视角稀疏表示系数矢量为基础,定义他们之间的相关性并构建相关性矩阵;基于非线性相关信息熵获取内在相关性最强的多视角子集;最后采用联合稀疏表示模型对选取得到的多视角进行分类,判定他们所属的目标类别。经选择得到的多视角在稀疏表示空间具有良好相关性,从而保证了联合稀疏表示分类的精度和可靠性。实验依托MSTAR数据集开展并进行分析,结果验证了所提方法的有效性。 展开更多
关键词 合成孔径雷达 多视角 稀疏表示系数 联合稀疏表示
在线阅读 下载PDF
基于低秩正则联合稀疏建模的图像去噪算法
5
作者 查志远 袁鑫 +1 位作者 张嘉超 朱策 《电子与信息学报》 北大核心 2025年第2期561-572,共12页
非局部稀疏表示模型,如联合稀疏(JS)模型、低秩(LR)模型和组稀疏表示(GSR)模型,通过有效利用图像的非局部自相似(NSS)属性,在图像去噪研究中展现出巨大的潜力。流行的基于字典的JS算法在其目标函数中利用松驰的凸惩罚,避免了NP-hard稀... 非局部稀疏表示模型,如联合稀疏(JS)模型、低秩(LR)模型和组稀疏表示(GSR)模型,通过有效利用图像的非局部自相似(NSS)属性,在图像去噪研究中展现出巨大的潜力。流行的基于字典的JS算法在其目标函数中利用松驰的凸惩罚,避免了NP-hard稀疏编码,但只能得到近似的稀疏表示。这种近似的JS模型未能对潜在的图像数据施加低秩性,从而导致图像去噪质量降低。该文提出一种新颖的低秩正则联合稀疏(LRJS)模型,用于求解图像去噪问题。提出的LRJS模型同时利用非局部相似块的LR和JS先验信息,可以增强非局部相似块之间的相关性(即低秩性),从而可以更好地抑制噪声,提升去噪图像的质量。为了提高优化过程的可处理性和鲁棒性,该文设计了一种具有自适应参数调整策略的交替最小化算法来求解目标函数。在两个图像去噪问题(包括高斯噪声去除和泊松噪声去除)上的实验结果表明,提出的LRJS方法在客观度量和视觉感知上均优于许多现有的流行或先进的图像去噪算法,特别是在处理具有高度自相似性的图像数据时表现更为出色。提出的LRJS图像去噪算法的源代码通过以下链接下载:https://pan.baidu.com/s/14bt6u94NBTZXxhWjBHxn6A?pwd=1234,提取码:1234。 展开更多
关键词 图像去噪 泊松去噪 非局部稀疏表示 低秩正则联合稀疏 交替最小化算法 自适应参数
在线阅读 下载PDF
基于自适应矩阵的核联合稀疏表示高光谱图像分类
6
作者 陈善学 夏馨 《遥感信息》 CSCD 北大核心 2024年第2期19-27,共9页
针对高光谱图像丰富的空间信息和光谱信息未充分利用的问题,提出了基于自适应矩阵的核联合稀疏表示高光谱图像分类的方法。在特征表示阶段,定义了自适应矩阵特征,通过结合自适应邻域块策略与非线性相关熵度量构成的特征来描述原始光谱像... 针对高光谱图像丰富的空间信息和光谱信息未充分利用的问题,提出了基于自适应矩阵的核联合稀疏表示高光谱图像分类的方法。在特征表示阶段,定义了自适应矩阵特征,通过结合自适应邻域块策略与非线性相关熵度量构成的特征来描述原始光谱像素,充分融合了形状可变的空间信息与非线性光谱信息。在分类阶段,考虑自适应矩阵和高光谱图像非线性,采用对数欧式核函数,构建了核联合稀疏表示模型,以获得重构误差。同时利用字典空间信息构建了矩阵相关性,引入平衡参数实现了稀疏重构误差与矩阵相关性的联合分类。在两个数据集上的实验结果表明,该算法充分利用了高光谱图像的空间信息、光谱信息,能够有效提高分类精度。 展开更多
关键词 高光谱图像分类 核联合稀疏表示 自适应邻域块 自适应矩阵 矩阵相关性
在线阅读 下载PDF
基于多形态学成分分析的图像融合 被引量:1
7
作者 马晓乐 王志海 胡绍海 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期10-17,共8页
将多尺度分解与稀疏表示相结合,提出了一种基于多形态学成分分析(MCA)的图像融合算法。采用基于联合稀疏表示(JSR)的方法融合卡通子图像中的冗余和互补信息,并利用基于方向特征的方法融合具有更多细节信息和噪声的纹理子图像。结果表明... 将多尺度分解与稀疏表示相结合,提出了一种基于多形态学成分分析(MCA)的图像融合算法。采用基于联合稀疏表示(JSR)的方法融合卡通子图像中的冗余和互补信息,并利用基于方向特征的方法融合具有更多细节信息和噪声的纹理子图像。结果表明,提出的图像融合算法在主观视觉效果和客观评价指标上均优于先进的图像融合算法。 展开更多
关键词 图像融合 多尺度分解 形态学成分分析(MCA) 联合稀疏表示(jsr)
在线阅读 下载PDF
基于核空间联合稀疏表示和指数平滑的多基地水下小目标识别 被引量:2
8
作者 王佳维 许枫 杨娟 《电子学报》 EI CAS CSCD 北大核心 2024年第1期217-231,共15页
针对多基地水下小目标分类识别问题,本文提出了一种基于核空间联合稀疏表示和指数平滑的多基地水下小目标识别方法 .对水下目标多角度散射信号提取6种典型的具有信息互补性和关联性的特征,提出一种随机森林(Random Forest,RF)和最小冗... 针对多基地水下小目标分类识别问题,本文提出了一种基于核空间联合稀疏表示和指数平滑的多基地水下小目标识别方法 .对水下目标多角度散射信号提取6种典型的具有信息互补性和关联性的特征,提出一种随机森林(Random Forest,RF)和最小冗余最大相关(minimum Redundancy and Maximum Relevance,mRMR)相结合的特征选择方法(RF-mRMR),得出综合的特征重要性排序结果 .通过实验得出分类模型所需的最优特征子集,达到降低数据处理复杂度和提高目标分类结果的目的 .为了捕捉到数据中的高阶结构,在联合稀疏表示模型的基础上,使用核函数将线性不可分的特征数据映射到高维核特征空间.为了充分挖掘稀疏重构后包含在残差波段中的有用信息,使用指数平滑公式对具有一定意义的残差信息进行再利用,最后由核特征空间下的最小误差准则判定目标的类别.应用本文提出的方法对4类目标的海试数据进行识别,结果表明,相较于其他7种对比算法,本文提出的改进方法具有更好的分类性能,而且大多数情况下,本文提出的算法在双基地声呐模式下具有比单基地声呐更高的识别准确率和更低的虚警率. 展开更多
关键词 多基地 水下小目标识别 多特征融合 特征选择 核空间联合稀疏表示 指数平滑
在线阅读 下载PDF
基于低秩子空间恢复的联合稀疏表示人脸识别算法 被引量:45
9
作者 胡正平 李静 《电子学报》 EI CAS CSCD 北大核心 2013年第5期987-991,共5页
针对阴影、反光及遮挡等原因破坏图像低秩结构这一问题,提出基于低秩子空间恢复的联合稀疏表示识别算法.首先将每个个体的所有训练样本图像看作矩阵D,将矩阵D分解为低秩矩阵A和稀疏误差矩阵E,其中A表示某类个体的‘干净’人脸,严格遵循... 针对阴影、反光及遮挡等原因破坏图像低秩结构这一问题,提出基于低秩子空间恢复的联合稀疏表示识别算法.首先将每个个体的所有训练样本图像看作矩阵D,将矩阵D分解为低秩矩阵A和稀疏误差矩阵E,其中A表示某类个体的‘干净’人脸,严格遵循子空间结构,E表示由阴影、反光、遮挡等引起的误差项,这些误差项破坏了人脸图像的低秩结构.然后用低秩矩阵A和误差矩阵E构造训练字典,将测试样本表示为低秩矩阵A和误差矩阵E的联合稀疏线性组合,利用这两部分的稀疏逼近计算残差,进行分类判别.实验证明该稀疏表示识别算法有效,识别精度得到了有效提高. 展开更多
关键词 人脸识别 稀疏表示 联合稀疏 低秩子空间恢复
在线阅读 下载PDF
一种联合阴影和目标区域图像的SAR目标识别方法 被引量:15
10
作者 丁军 刘宏伟 +3 位作者 王英华 王正珏 齐会娇 时荔蕙 《电子与信息学报》 EI CSCD 北大核心 2015年第3期594-600,共7页
地面目标的SAR图像中除了包含目标散射回波形成的区域,还包括由目标遮挡地面形成的阴影区域。但是由于这两种区域中的图像特性不相同,所以传统的SAR图像自动目标识别主要利用目标区域信息进行目标识别,或者单独使用阴影区域进行识别。... 地面目标的SAR图像中除了包含目标散射回波形成的区域,还包括由目标遮挡地面形成的阴影区域。但是由于这两种区域中的图像特性不相同,所以传统的SAR图像自动目标识别主要利用目标区域信息进行目标识别,或者单独使用阴影区域进行识别。该文提出一种阴影区域与目标区域图像联合的稀疏表示模型。通过使用l1\l2范数最小化方法求解该模型得到联合的稀疏表示,然后根据联合重构误差最小准则进行SAR图像目标识别。在运动和静止目标获取与识别(MSTAR)数据集上的识别实验结果表明,通过联合稀疏表示模型可以有效地将目标区域与阴影区域信息进行融合,相对于采用单独区域图像的稀疏表示识别方法性能更好。 展开更多
关键词 目标识别 联合稀疏表示 l1/l2范数最小化
在线阅读 下载PDF
基于过完备字典稀疏表示的多通道脑电信号压缩感知联合重构 被引量:11
11
作者 吴建宁 徐海东 王珏 《电子与信息学报》 EI CSCD 北大核心 2016年第7期1666-1673,共8页
该文基于多通道脑电信号时空特性构建非正交变换过完备字典,准确稀疏表示蕴含时空相关性信息的多通道脑电信号,提高基于时空稀疏贝叶斯学习模型的多通道脑电信号压缩感知联合重构算法性能。实验选用eegmmidb脑电数据库的多通道脑电信号... 该文基于多通道脑电信号时空特性构建非正交变换过完备字典,准确稀疏表示蕴含时空相关性信息的多通道脑电信号,提高基于时空稀疏贝叶斯学习模型的多通道脑电信号压缩感知联合重构算法性能。实验选用eegmmidb脑电数据库的多通道脑电信号验证所提算法有效性。结果表明,基于过完备字典稀疏表示的多通道脑电信号,能够为多通道脑电信号压缩感知重构算法提供更多的时空相关性信息,比传统多通道脑电信号压缩感知重构算法所得的信噪比值提高近12 d B,重构时间减少0.75 s,显著提高多通道脑电信号联合重构性能。 展开更多
关键词 脑电信号稀疏表示 过完备字典 联合重构 时空稀疏贝叶斯学习 压缩感知
在线阅读 下载PDF
基于样本-扩展差分模板的联合双稀疏表示人脸识别 被引量:4
12
作者 胡正平 李静 白洋 《信号处理》 CSCD 北大核心 2012年第12期1663-1669,共7页
在人脸识别中,每类数据分别位于由字典形成的高维空间中的多个低维线性子空间,考虑到这一结构信息对识别起到一定支持作用,利用块结构稀疏表示进行人脸识别。针对训练图像不能涵盖测试条件下的人脸变化这个问题,提出基于样本-扩展差分... 在人脸识别中,每类数据分别位于由字典形成的高维空间中的多个低维线性子空间,考虑到这一结构信息对识别起到一定支持作用,利用块结构稀疏表示进行人脸识别。针对训练图像不能涵盖测试条件下的人脸变化这个问题,提出基于样本-扩展差分模板的联合双稀疏表示识别算法。它通过构造样本-扩展差分模板来表示训练样本与测试样本之间可能存在的差异,这些类内差异信息可被不同的类别所共享,即任何一类人脸图像的类内差异可表示为其他类别类内差异图像的原子稀疏线性组合。这样识别问题被转换为在训练样本空间和扩展差分模板空间寻找测试样本的块稀疏与原子稀疏的联合双稀疏表示。在AR和Extended Yale B数据库上的实验结果表明,在具有光照、表情变化和遮挡的情况下,本文提出的识别算法具有更好的有效性和鲁棒性。 展开更多
关键词 人脸识别 稀疏表示 块结构稀疏 联合双稀疏 扩展差分模板
在线阅读 下载PDF
联合多分辨表示的SAR图像目标识别方法 被引量:11
13
作者 蔡德饶 张婷 《电子测量与仪器学报》 CSCD 北大核心 2018年第12期71-77,共7页
提出了联合多分辨率表示的合成孔径雷达(SAR)目标识别方法。该方法首先根据SAR图像的成像机理构造原始图像的多分辨率表示。多分辨率表示以互补的方式由粗到精地描述了目标的特性,可以为后续的目标识别提供更丰富的鉴别力信息。为了充... 提出了联合多分辨率表示的合成孔径雷达(SAR)目标识别方法。该方法首先根据SAR图像的成像机理构造原始图像的多分辨率表示。多分辨率表示以互补的方式由粗到精地描述了目标的特性,可以为后续的目标识别提供更丰富的鉴别力信息。为了充分利用多分辨率表示中蕴含的信息,采用联合稀疏表示对其进行分类。作为一种多任务学习算法,联合稀疏表示既可以有效表示各个分辨率上的表示还可以充分发掘各个分辨率之间的内在相关性。因此,结合多分辨率表示和联合稀疏表示分类器可以有效提高SAR目标识别性能。基于MSTAR(moving and stationary target acquisition and recognition)公共数据集在多种操作条件下进行了目标识别实验,充分验证了方法的有效性。 展开更多
关键词 合成孔径雷达 目标识别 多分辨率表示 联合稀疏表示
在线阅读 下载PDF
基于非局部稀疏表示的立体图像的超分辨率重建 被引量:3
14
作者 周圆 王爱华 +1 位作者 陈莹 侯春萍 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2017年第4期377-384,共8页
针对在立体图像的超分辨率重建过程中,需要分别对低分辨率的彩图和同场景的深度图进行超分辨率重建的问题,提出了一种基于联合稀疏表示的立体图像的超分辨率重建方法.该方法在非局部中心稀疏表示重建方法的基础上,利用彩色图像与同场景... 针对在立体图像的超分辨率重建过程中,需要分别对低分辨率的彩图和同场景的深度图进行超分辨率重建的问题,提出了一种基于联合稀疏表示的立体图像的超分辨率重建方法.该方法在非局部中心稀疏表示重建方法的基础上,利用彩色图像与同场景深度图像的耦合相关性,通过构造联合特征图像块来学习彩色和深度图像的联合字典;然后构造彩色和深度图像块的联合编码增量作为正则项,利用迭代优化算法求解模型,进而同时重建高分辨率的彩色和深度图像.为验证算法的有效性,在Middlebury数据集上对重建结果进行了主、客观评估,并与不同算法进行了比较.实验结果表明,在客观指标和主观视觉效果上,本文提出的算法可以同时获得令人满意的彩图和高质量的深度图. 展开更多
关键词 超分辨率重建 稀疏表示 联合特征图像块 立体图像 联合字典学习
在线阅读 下载PDF
基于光谱相似度量的高光谱图像多任务联合稀疏光谱解混方法 被引量:3
15
作者 许宁 尤红建 +1 位作者 耿修瑞 曹银贵 《电子与信息学报》 EI CSCD 北大核心 2016年第11期2701-2708,共8页
基于图像中存在的邻域以及非局部相似等图像空间特征和联合稀疏解混思想,该文提出一种基于高光谱图像光谱相似性度量的多任务联合稀疏解混方法。通过高光谱图像的光谱特性统计值设定光谱度量阈值,对高光谱图像中相似的像元光谱进行光谱... 基于图像中存在的邻域以及非局部相似等图像空间特征和联合稀疏解混思想,该文提出一种基于高光谱图像光谱相似性度量的多任务联合稀疏解混方法。通过高光谱图像的光谱特性统计值设定光谱度量阈值,对高光谱图像中相似的像元光谱进行光谱相似性度量分组,再对分组像元光谱数据进行多任务联合稀疏光谱解混模型的构建和求解,得到最终的丰度系数。模拟数据实验结果表明,该方法一定程度上提升了现有联合稀疏光谱解混方法的丰度估计精度,真实数据结果也验证了方法的有效性。 展开更多
关键词 高光谱图像 光谱解混 联合稀疏表示 光谱相似性度量
在线阅读 下载PDF
多极化SAR图像联合稀疏去噪 被引量:4
16
作者 韩萍 邓豪 石庆研 《现代雷达》 CSCD 北大核心 2015年第11期37-41,47,共6页
给出了一种基于联合稀疏表示的多极化合成孔径雷达(SAR)图像滤波算法。首先,利用三个极化通道(HH、HV、VV)的部分SAR图像数据进行字典联合训练;然后,对极化SAR的三个通道图像构建联合稀疏描述模型;最后,采用正交匹配追踪算法求解联合稀... 给出了一种基于联合稀疏表示的多极化合成孔径雷达(SAR)图像滤波算法。首先,利用三个极化通道(HH、HV、VV)的部分SAR图像数据进行字典联合训练;然后,对极化SAR的三个通道图像构建联合稀疏描述模型;最后,采用正交匹配追踪算法求解联合稀疏系数,重构每个通道的图像。文中采用美国AIRSAR实测半月湾数据进行实验,并与每个通道图像单独稀疏去噪再合成的功率图像结果进行比较,结果表明:该算法不仅对图像的斑点噪声抑制效果明显,而且边缘特性和强散射点目标幅值特征保持效果良好。 展开更多
关键词 联合稀疏表示 多极化SAR 斑点抑制
在线阅读 下载PDF
联合稀疏表示的医学图像融合及同步去噪 被引量:6
17
作者 宗静静 邱天爽 郭冬梅 《中国生物医学工程学报》 CAS CSCD 北大核心 2016年第2期133-140,共8页
将多模态医学图像的互补信息有机地融合在一起,可为临床诊断和辅助治疗提供丰富信息和有效帮助。基于联合稀疏模型,提出一种联合稀疏表示的医学图像融合算法,当图像被噪声污染时,该算法在融合的同时兼有去噪功能。首先,将配准的源图像... 将多模态医学图像的互补信息有机地融合在一起,可为临床诊断和辅助治疗提供丰富信息和有效帮助。基于联合稀疏模型,提出一种联合稀疏表示的医学图像融合算法,当图像被噪声污染时,该算法在融合的同时兼有去噪功能。首先,将配准的源图像编纂成列向量并组成联合矩阵,通过在线字典学习算法(ODL)得到该矩阵的超完备字典;其次,利用该字典得到联合稀疏模型下的联合字典,之后利用最小角回归算法(LARS)计算基于联合字典的公共稀疏系数和各图像的独特稀疏系数,并根据"选择最大化"融合规则得到融合图像的稀疏系数;最后,根据融合系数和超完备字典重构融合图像。将该算法与3种经典算法比较,结果显示其主观上亮度失真和对比度失真较小,边缘纹理清晰,客观参数指标MI、QAB/F在无噪声干扰和有噪声干扰时的统计均值分别为:3.992 3、2.896 4、2.505 5和0.658、0.552 4、0.439 6,可以为临床诊断和辅助治疗提供有效帮助。 展开更多
关键词 联合稀疏表示 在线字典学习 医学图像融合 图像去噪
在线阅读 下载PDF
基于联合稀疏描述的多姿态三维人脸识别 被引量:3
18
作者 郭哲 樊养余 +1 位作者 雷涛 刘姝 《西北工业大学学报》 EI CAS CSCD 北大核心 2014年第3期382-387,共6页
提出一种基于联合稀疏描述的多姿态三维人脸识别算法。该算法基于多幅不同姿态的三维人脸测试样本联合完成身份识别,通过假设多幅测试样本共享同一稀疏类型,联合多视图信息,构建三维空间字典和稀疏描述模型,用于对稀疏描述向量进行联合... 提出一种基于联合稀疏描述的多姿态三维人脸识别算法。该算法基于多幅不同姿态的三维人脸测试样本联合完成身份识别,通过假设多幅测试样本共享同一稀疏类型,联合多视图信息,构建三维空间字典和稀疏描述模型,用于对稀疏描述向量进行联合重建。该方法最显著的特点就是利用所有观测视图的相互关系,避免单独对待每一个观测值时所潜在的错误判别风险,从而提高识别准确率。在国际三维人脸数据库FRGC2.0上的实验证明该算法对多姿态三维人脸的识别性能优于相互子空间算法和稀疏表示识别算法。 展开更多
关键词 人脸识别 图像分类 联合稀疏描述 多姿态 三维人脸识别
在线阅读 下载PDF
基于自适应核联合稀疏表示的多特征高光谱图像分类 被引量:3
19
作者 张会敏 杨明 吕静 《中国科学技术大学学报》 CAS CSCD 北大核心 2018年第4期298-306,共9页
稀疏表示已被证明是高光谱图像(HSI)分类中的有力工具,同时利用多种特征信息进行联合分类的优点在HSI图像分类领域受到关注,但多特征数据的稀疏策略以及数据的非线性是两个棘手的问题.为此提出了自适应稀疏模式的核联合稀疏模型对高光... 稀疏表示已被证明是高光谱图像(HSI)分类中的有力工具,同时利用多种特征信息进行联合分类的优点在HSI图像分类领域受到关注,但多特征数据的稀疏策略以及数据的非线性是两个棘手的问题.为此提出了自适应稀疏模式的核联合稀疏模型对高光谱图像进行分类.对于几个互补特征(梯度,文理和形状),该模型同时获取每种特征的表示向量,并且通过施加自适应稀疏策略ladaptive,0来有效利用多特征信息.自适应稀疏策略,不仅限制不同特征空间的像素通过来自特定类的原子表示,而且允许这些像素选定的原子不同,从而提供更好的表示方法.此外,提出的核联合稀疏表示模型用于处理数据的非线性问题.核模型将数据投影到高维空间以提高可分离性,实现比线性模型更好的性能.在数据集Indian Pines和University of Pavia的实验结果表明,所提出的算法表现出更高的分类精度. 展开更多
关键词 高光谱图像分类 联合稀疏表示 特征提取
在线阅读 下载PDF
多模态特征联合稀疏表示的视频目标跟踪 被引量:4
20
作者 段喜萍 刘家锋 +1 位作者 王建华 唐降龙 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2015年第12期1609-1613,共5页
针对复杂跟踪环境下,单模态方法不能很好地跟踪目标的问题,提出了一种基于多模态特征联合稀疏表示的目标跟踪方法。该方法对每个候选样本的多模态特征进行联合稀疏表示,将各模态重建误差之和用于计算候选样本的观察概率,并将具有最大观... 针对复杂跟踪环境下,单模态方法不能很好地跟踪目标的问题,提出了一种基于多模态特征联合稀疏表示的目标跟踪方法。该方法对每个候选样本的多模态特征进行联合稀疏表示,将各模态重建误差之和用于计算候选样本的观察概率,并将具有最大观察概率的候选样本确定为目标。通过与其他一些流行跟踪算法进行对比实验,结果表明本方法在遮挡、光照变化等场景下均能可靠跟踪,具有更好的跟踪效果,从而验证了方法的可行性。 展开更多
关键词 计算机视觉 视频目标跟踪 多模态 LBP APG 模板更新 联合稀疏表示
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部