The objective of this paper is to develop monotone techniques for obtaining extremal solutions of initial value problem for nonlinear neutral delay differential equations.
By using partial order method, the existence, uniqueness and iterative approximation of solutions for a class of systems of nonlinear operator equations in Banach space are discussed. The results obtained in this pape...By using partial order method, the existence, uniqueness and iterative approximation of solutions for a class of systems of nonlinear operator equations in Banach space are discussed. The results obtained in this paper extend and improve recent results.展开更多
Sparse-view x-ray computed tomography (CT) imaging is an interesting topic in CT field and can efficiently decrease radiation dose. Compared with spatial reconstruction, a Fourier-based algorithm has advantages in r...Sparse-view x-ray computed tomography (CT) imaging is an interesting topic in CT field and can efficiently decrease radiation dose. Compared with spatial reconstruction, a Fourier-based algorithm has advantages in reconstruction speed and memory usage. A novel Fourier-based iterative reconstruction technique that utilizes non-uniform fast Fourier transform (NUFFF) is presented in this work along with advanced total variation (TV) regularization for a fan sparse-view CT. The proposition of a selective matrix contributes to improve reconstruction quality. The new method employs the NUFFT and its adjoin to iterate back and forth between the Fourier and image space. The performance of the proposed algorithm is demonstrated through a series of digital simulations and experimental phantom studies. Results of the proposed algorithm are compared with those of existing TV-regularized techniques based on compressed sensing method, as well as basic algebraic reconstruction technique. Compared with the existing TV-regularized techniques, the proposed Fourier-based technique significantly improves convergence rate and reduces memory allocation, respectively.展开更多
Aim To investigate the periodic boundary value problem for functional differential equations with impulses. Methods The method of upper and lower solutions and the monotone iterative technique were used to establish...Aim To investigate the periodic boundary value problem for functional differential equations with impulses. Methods The method of upper and lower solutions and the monotone iterative technique were used to establish our results. Results and Conclusion The results of the existence of maximal and minimal solutions of the periodic boundary value problem for functional differential equations with impulses are obtained.展开更多
In this paper, the skew-increasing operators and their coupled fixed points are defined. It is proved that the existence of coupled fixed points and fixed point theorem for skew-increasing operators, and the iterative...In this paper, the skew-increasing operators and their coupled fixed points are defined. It is proved that the existence of coupled fixed points and fixed point theorem for skew-increasing operators, and the iterative formula are given.展开更多
In this paper, we consider a class of nonlinear fractional differential equation boundary value problem. The existence of monotone positive solution is derived by the iterative technique.
The periodic boundary value problems for nonlinear functional differential equa- tions was discussed.The existence of maximal and minimal solutions was obtained when the lower and upper solutions satisfied the formal ...The periodic boundary value problems for nonlinear functional differential equa- tions was discussed.The existence of maximal and minimal solutions was obtained when the lower and upper solutions satisfied the formal or reverse order.展开更多
This paper studies the existence of solutions for mixed monotone impulsive Volterra integral equations on the infinite interval R+ with an infinite number of moments of impulse effect in Banach spaces. By using the mi...This paper studies the existence of solutions for mixed monotone impulsive Volterra integral equations on the infinite interval R+ with an infinite number of moments of impulse effect in Banach spaces. By using the mixed monotone iterative technique and Monch fixed point theorem, Some existence theorems of solutions and coupled minimal and maximal quasisolutions are obtained. Finally, an example is worked out.展开更多
文摘The objective of this paper is to develop monotone techniques for obtaining extremal solutions of initial value problem for nonlinear neutral delay differential equations.
文摘By using partial order method, the existence, uniqueness and iterative approximation of solutions for a class of systems of nonlinear operator equations in Banach space are discussed. The results obtained in this paper extend and improve recent results.
基金Projected supported by the National High Technology Research and Development Program of China(Grant No.2012AA011603)the National Natura Science Foundation of China(Grant No.61372172)
文摘Sparse-view x-ray computed tomography (CT) imaging is an interesting topic in CT field and can efficiently decrease radiation dose. Compared with spatial reconstruction, a Fourier-based algorithm has advantages in reconstruction speed and memory usage. A novel Fourier-based iterative reconstruction technique that utilizes non-uniform fast Fourier transform (NUFFF) is presented in this work along with advanced total variation (TV) regularization for a fan sparse-view CT. The proposition of a selective matrix contributes to improve reconstruction quality. The new method employs the NUFFT and its adjoin to iterate back and forth between the Fourier and image space. The performance of the proposed algorithm is demonstrated through a series of digital simulations and experimental phantom studies. Results of the proposed algorithm are compared with those of existing TV-regularized techniques based on compressed sensing method, as well as basic algebraic reconstruction technique. Compared with the existing TV-regularized techniques, the proposed Fourier-based technique significantly improves convergence rate and reduces memory allocation, respectively.
文摘Aim To investigate the periodic boundary value problem for functional differential equations with impulses. Methods The method of upper and lower solutions and the monotone iterative technique were used to establish our results. Results and Conclusion The results of the existence of maximal and minimal solutions of the periodic boundary value problem for functional differential equations with impulses are obtained.
文摘In this paper, the skew-increasing operators and their coupled fixed points are defined. It is proved that the existence of coupled fixed points and fixed point theorem for skew-increasing operators, and the iterative formula are given.
基金Supported by Teaching Reform Project of Higher Education Institutions in Shanxi (Grant No. J2020417)。
文摘In this paper, we consider a class of nonlinear fractional differential equation boundary value problem. The existence of monotone positive solution is derived by the iterative technique.
基金Supported by the Education Department Foundation of Shandong Province(J07WH01)
文摘The periodic boundary value problems for nonlinear functional differential equa- tions was discussed.The existence of maximal and minimal solutions was obtained when the lower and upper solutions satisfied the formal or reverse order.
文摘This paper studies the existence of solutions for mixed monotone impulsive Volterra integral equations on the infinite interval R+ with an infinite number of moments of impulse effect in Banach spaces. By using the mixed monotone iterative technique and Monch fixed point theorem, Some existence theorems of solutions and coupled minimal and maximal quasisolutions are obtained. Finally, an example is worked out.