期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Application of Interval Algorithm in Rural Power Network Planning
1
作者 GU Zhuomu ZHAO Yulin 《Journal of Northeast Agricultural University(English Edition)》 CAS 2009年第3期57-60,共4页
Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization r... Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization results of rural power network planning. To solve the problems, the interval algorithm was used to modify the initial search method of uncertainty load mathematics model in rural network planning. Meanwhile, the genetic/tabu search combination algorithm was adopted to optimize the initialized network. The sample analysis results showed that compared with the certainty planning, the improved method was suitable for urban medium-voltage distribution network planning with consideration of uncertainty load and the planning results conformed to the reality. 展开更多
关键词 rural power network optimization planning load uncertainty interval algorithm genetic/tabu search combination algorithm
在线阅读 下载PDF
FWNN for Interval Estimation with Interval Learning Algorithm
2
作者 Wang, Ling Liu, Fang Jiao, Licheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1998年第1期56-66,共11页
In this paper, a wavelet based fuzzy neural network for interval estimation of processed data with its interval learning algorithm is proposed. It is also proved to be an efficient approach to calculate the wavelet c... In this paper, a wavelet based fuzzy neural network for interval estimation of processed data with its interval learning algorithm is proposed. It is also proved to be an efficient approach to calculate the wavelet coefficient. 展开更多
关键词 Fuzzy wavelet neural network (FWNN) interval learning algorithm.
在线阅读 下载PDF
Computational intelligence approach for uncertainty quantification using evidence theory 被引量:4
3
作者 Bin Suo Yongsheng Cheng +1 位作者 Chao Zeng Jun Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第2期250-260,共11页
As an alternative or complementary approach to the classical probability theory,the ability of the evidence theory in uncertainty quantification(UQ) analyses is subject of intense research in recent years.Two state-... As an alternative or complementary approach to the classical probability theory,the ability of the evidence theory in uncertainty quantification(UQ) analyses is subject of intense research in recent years.Two state-of-the-art numerical methods,the vertex method and the sampling method,are commonly used to calculate the resulting uncertainty based on the evidence theory.The vertex method is very effective for the monotonous system,but not for the non-monotonous one due to its high computational errors.The sampling method is applicable for both systems.But it always requires a high computational cost in UQ analyses,which makes it inefficient in most complex engineering systems.In this work,a computational intelligence approach is developed to reduce the computational cost and improve the practical utility of the evidence theory in UQ analyses.The method is demonstrated on two challenging problems proposed by Sandia National Laboratory.Simulation results show that the computational efficiency of the proposed method outperforms both the vertex method and the sampling method without decreasing the degree of accuracy.Especially,when the numbers of uncertain parameters and focal elements are large,and the system model is non-monotonic,the computational cost is five times less than that of the sampling method. 展开更多
关键词 uncertainty quantification(UQ) evidence theory hybrid algorithm interval algorithm genetic algorithm(GA).
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部